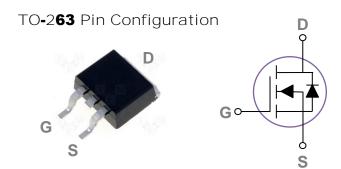


100V N-Channel MOSFETs


General Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

BV _{DSS}	R _{DS(ON)} Max.	I _D
100V	4.2m $Ω$	150A

Features

- 100V,150A, $R_{DS(ON)}Max. = 4.2m\Omega@V_{GS} = 10V$
- Improved dv/dt capability
- Fast switching
- Green Device Available

Applications

- Networking
- Load Switch
- LED applications
- Quick Charger

Absolute Maximum Ratings Tc=25℃ unless otherwise noted

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	100	V
V _G S	Gate-Source Voltage	±20	V
I_	Drain Current – Continuous (T _C =25°C)	150	Α
ID	Drain Current – Continuous (T _C =100°C)	95	Α
I _{DM}	Drain Current – Pulsed ¹	600	Α
E _{AS}	Single Pulse Avalanche Energy ²	378	mJ
I _{AS}	Single Pulse Avalanche Current ²	87	Α
P_D	Power Dissipation (T _C =25°C)	350	W
T _{STG}	Storage Temperature Range	-50 to 150	°C
TJ	Operating Junction Temperature Range	-50 to 150	°C

Note 1: Exceed these limits to damage to the device.

Note 2: Exposure to absolute maximum rating conditions may affect device reliability.

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =250uA	100			V
IDSS	Drain-Source Leakage Current	V _{DS} =100V , V _{GS} =0V , T _J =25°C			1	uA
		V _{DS} =80V , V _{GS} =0V , T _J =85°C			10	uA
I _{GSS}	Gate-Source Leakage Current	V _{GS} =20V , V _{DS} =0V			100	nA

On Characteristics

Rds(ON)	Static Drain-Source On-Resistance	V _{GS} =10V , I _D =20A		3.5	4.2	mΩ
		V _{GS} =6V , I _D =15A		4.5	6.0	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	-V _{GS} =V _{DS} , I _D =250uA	2.4	2.5	2.75	V
$\triangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient			-8		mV/℃
gfs	Forward Transconductance	V _{DS} =5V , I _D =20A		90		S

Dynamic and switching Characteristics

Qg	Total Gate Charge ^{3,4}		110	
Q _{gs}	Gate-Source Charge ^{3, 4}	V_{DS} =80V , V_{GS} =10V , I_{D} =10A	11.5	nC
Q_{gd}	Gate-Drain Charge ^{3, 4}		28	
$T_{d(on)}$	Turn-On Delay Time ^{3, 4}		23	
Tr	Rise Time ^{3,4}	V_{DD} =50 V , V_{GS} =10 V , R_{G} =6 Ω	32	no
$T_{d(off)}$	Turn-Off Delay Time ^{3, 4}	I _D =1A	157	ns
T _f	Fall Time ^{3 , 4}		115	
Ciss	Input Capacitance		5218	
Coss	Output Capacitance	V _{DS} =25V , V _{GS} =0V , F=1MHz	1223	pF
C _{rss}	Reverse Transfer Capacitance		62	
Rg	Gate resistance	V _{GS} =0V, V _{DS} =0V, F=1MHz	1.9	Ω

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current	-V _G =V _D =0V , Force Current			150	Α
lsм	Pulsed Source Current				300	Α
V _{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =1A , T _J =25°C			1	V

Note:

- 1. Repetitive Rating : Pulsed width limited by maximum junction temperature.
- 2. V_{DD} =25V, V_{GS} =10V,L=0.1mH, I_{AS} =87A., R_{G} =25 Ω , Starting T_{J} =25 $^{\circ}$ C.
- 3. The data tested by pulsed , pulse width ≤ 300 us , duty cycle $\leq 2\%$.
- 4. Essentially independent of operating temperature.

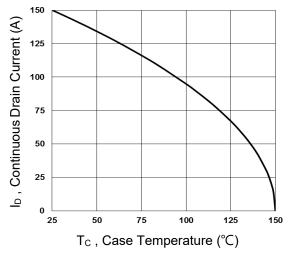


Fig.1 Continuous Drain Current vs. Tc

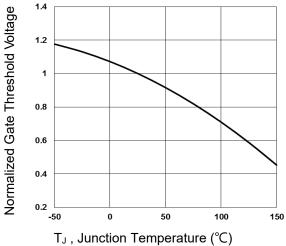


Fig.3 Normalized Vth vs. TJ

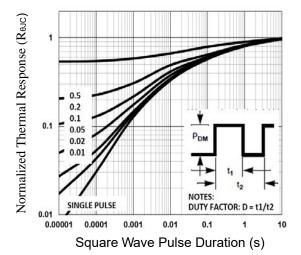


Fig.5 Normalized Transient Impedance

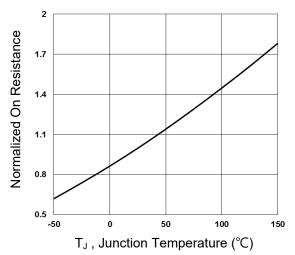


Fig. 2 Normalized RDSON vs. TJ

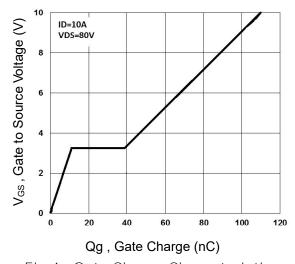


Fig.4 Gate Charge Characteristics

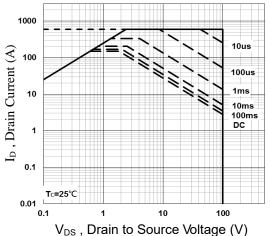
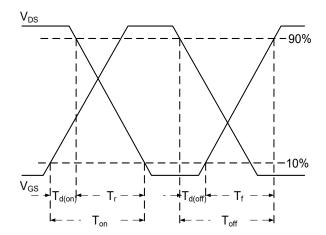



Fig. 6 Maximum Safe Operation Area

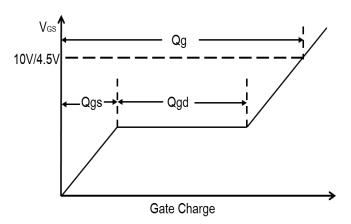
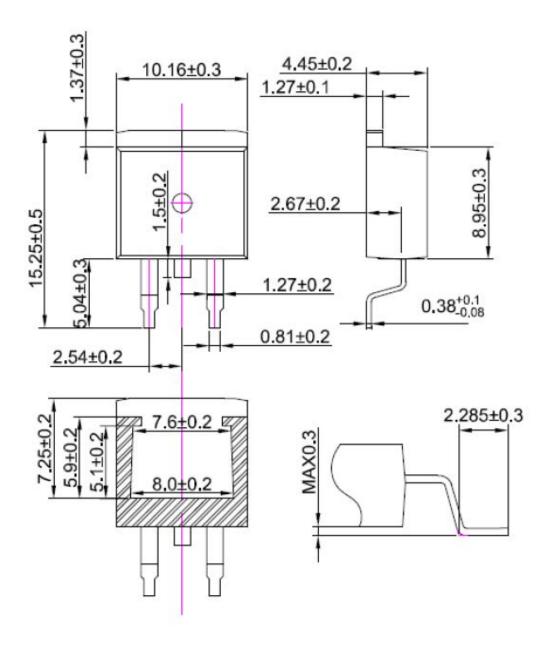



Fig.8 Gate Charge Waveform

TO-263 PACKAGE INFORMATION

