

30V P-Channel MOSFETs

General Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

PPAK3 x 3 Pin Configuration

Product Summary

BV _{DSS}	R _{DS(ON)} Typ.	I _D
-30 V	17 mΩ	-30 A

Features

- -30 V, -30 A, $R_{DS(ON)}$ Typ. = 17 m Ω @ V_{GS} = -4.5 V
- Fast switching
- Green Device Available
- Suit for -4.5 V Gate Drive Applications

Applications

- MB / VGA / Vcore
- POL Applications
- Load Switch
- LED applications

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	-30	V
V_{GS}	Gate-Source Voltage	±12	V
1	Drain Current – Continuous (T _C = 25°C)	-30	Α
I _D	Drain Current – Continuous (T _C = 100°C)	-19	Α
I _{DM}	Drain Current – Pulsed ¹	-120	Α
D	Power Dissipation (T _C = 25°C)	23	W
P _D	Power Dissipation – Derate above 25°C	0.18	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
T _J	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Symbol Parameter		Max.	Unit
$R_{\theta JA}$	R _{0JA} Thermal Resistance Junction to ambient		62	°C/W
$R_{ heta JC}$	R _{0JC} Thermal Resistance Junction to Case		5.4	°C/W

Electrical Characteristics (T_J = 25℃, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV_{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}$, $I_{D} = -250 \mu\text{A}$	-30			V
$\Delta BV_{DSS}/\Delta T_{J}$	BV _{DSS} Temperature Coefficient	Reference to 25°C , I _D = -1 mA		-0.03		V/C
	Drain-Source Leakage Current	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C}$			-1	μΑ
I _{DSS}	Dialii-Source Leakage Current	$V_{DS} = -24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 85^{\circ}\text{C}$			-10	μΑ
I _{GSS}	Gate-Source Leakage Current	$V_{GS} = \pm 12 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA

On Characteristics

Symbol Parameter		Conditions	Min.	Тур.	Max.	Unit
R _{DS(ON)}	Static Drain-Source On-Resistance	$V_{GS} = -4.5 \text{ V}, I_{D} = -6 \text{ A}$		17	20	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{GS} = V_{DS}$, $I_{D} = -250 \mu A$	-1.0	-1.5	-2.5	٧
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} - V _{DS} , I _D 250 μA		4		mV/°C
gfs	Forward Transconductance	$V_{DS} = -10 \text{ V}, I_{D} = -8 \text{ A}$		10.5		S

Dynamic and switching Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Q_g	Total Gate Charge ^{2,3}	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		14.6	21	
Q_{gs}	Gate-Source Charge ^{2,3}	$V_{DS} = -15 \text{ V}, V_{GS} = -4.5 \text{ V},$ $V_{DS} = -8 \text{ A}$		4.1	6	nC
Q_{gd}	Gate-Drain Charge ^{2,3}			6.3	9	
$T_{d(on)}$	Turn-On Delay Time ^{2, 3}			9	17	
T _r	Rise Time ^{2, 3}	$V_{DD} = -15V, V_{GS} = -4.5 V$		21.8	41	nS
$T_{d(off)}$	Turn-Off Delay Time ^{2, 3}	$R_G = 6 \Omega, I_D = -1 A$		59.8	114	113
T _f	Fall Time ^{2, 3}			14.4	27	
C_{iss}	Input Capacitance	45.4.14		1730	2510	
C _{oss}	Output Capacitance	$V_{DS} = -15 \text{ V}, V_{GS} = 0 \text{ V},$ F = 1 MHz		180	260	pF
C_{rss}	Reverse Transfer Capacitance	1 171112		125	180	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	V = V = 0 V Force Current			-30	Α
I _{SM}	Pulsed Source Current	$V_G = V_D = 0 V$, Force Current			-120	Α
V_{SD}	Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_{S} = 1 \text{ A}, T_{J} = 25^{\circ}\text{C}$			-1	V

Note:

- 1. Repetitive Rating: Pulsed width limited by maximum junction temperature.
- 2. The data tested by pulsed , pulse width ≤ 300µs, duty cycle ≤ 2%.
- 3. Essentially independent of operating temperature.

Typical Characteristics

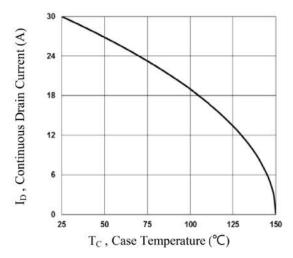


Fig.1 Continuous Drain Current vs. T_C

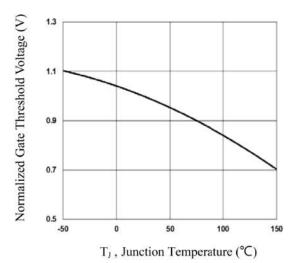


Fig.3 Normalized V_{th} vs. T_J

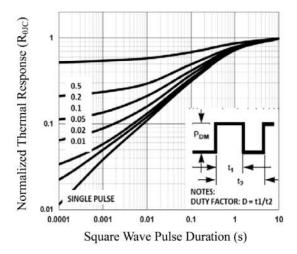


Fig.5 Normalized Transient Impedance

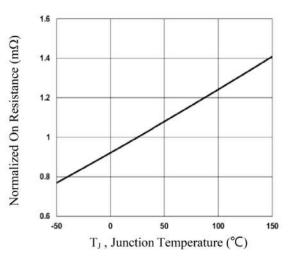


Fig.2 Normalized R_{DSON} vs. T_J

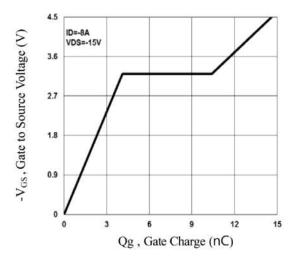


Fig.4 Gate Charge Waveform

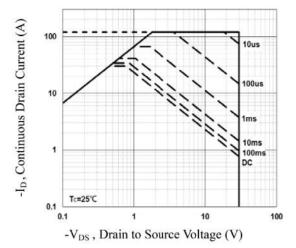


Fig.6 Maximum Safe Operation Area

Typical Characteristics (Continued)

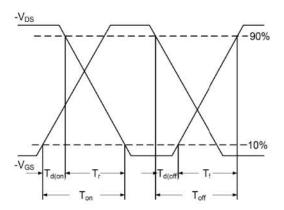


Fig.7 Switching Time Waveform

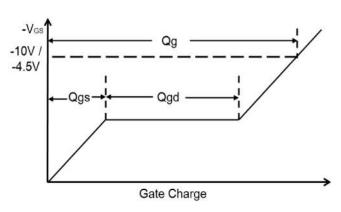
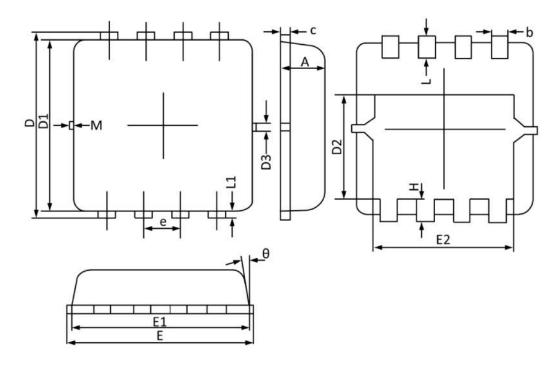



Fig.8 Gate Charge Waveform

Package Information

PPAK3 x 3

Cymbal	Dimensions I	n Millimeters	Dimension	s In Inches	
Symbol	Min	Max	Min	Max	
A	0.700	0.800	0.028	0.031	
b	0.250	0.350	0.010	0.013	
c	0.100	0.250	0.004	0.009	
D	3.250	3.450	0.128	0.135	
D1	3.000	3.200	0.119	0.125	
D2	1.780	1.980	0.070	0.077	
D3	0.130	REF	0.005	REF	
E	3.200	3.400	0.126	0.133	
E1	3.000	3.200	0.119	0.125	
E2	2.390	2.590	0.094	0.102	
e	0.650	BSC	0.026	BSC	
Н	0.300	0.500	0.011	0.019	
L	0.300	0.500	0.011	0.019	
L1	0.130	REF	0.005	REF	
θ	0°	12°	0°	12°	
M	0.150	REF	0.006 REF		