
30V P-Channel MOSFETs

General Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

PPAK3 x 3 Pin Configuration

Product Summary

BV _{DSS}	R _{DS(ON)} Max.	ID
-30 V	15 mΩ	-30 A

Features

- -30 V, -30 A, R_{DS(ON)} Max. = 15 mΩ @ V_{GS} = -10 V
- Fast switching
- Green Device Available
- Suit for -4.5 V Gate Drive Applications

Applications

- MB / VGA / Vcore
- POL Applications
- Load Switch
- LED applications

Absolute Maximum Ratings (Tc = 25°C unless otherwise noted)

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	-30	V
V _{GS}	Gate-Source Voltage	±17	V
I-	Drain Current – Continuous ($T_c = 25^{\circ}C$)	-30	А
ID	Drain Current – Continuous (T _c = 100°C)	$tous (T_c = 100^{\circ}C)$ -19	А
I _{DM}	Drain Current – Pulsed ¹	-120	А
PD	Power Dissipation ($T_c = 25^{\circ}C$)	23	W
ГD	Power Dissipation – Derate above 25°C	0.18	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
Reja	Thermal Resistance Junction to ambient		62	°C/W
Rejc	Thermal Resistance Junction to Case		5.4	°C/W

www.sumsemi.com

Electrical Characteristics (T_J = 25°C, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -250 \mu A$	-30			V
$\triangle BV_{DSS} / \triangle T$	BV _{DSS} Temperature Coefficient	Reference to 25° C , $I_{D} = -1 \text{ mA}$		-0.03		V/C
I _{DSS}	Drain-Source Leakage Current	$V_{DS} = -30 \text{ V}, V_{GS} = 0 \text{ V}, T_J = 25^{\circ}\text{C}$			-1	μA
		V _{DS} = -24 V, V _{GS} = 0 V, T _J = 85°C			-10	μA
lgss	Gate-Source Leakage Current	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA

On Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit	
Basian	Static Drain-Source On-Resistance	V_{GS} = -10 V, I_D = -8 A		13	15		
Rds(ON)		V_{GS} = -4.5 V, I _D = -6 A		17	20	mΩ	
V _{GS(th)}	Gate Threshold Voltage		-1.0	-1.6	-2.5	V	
$\Delta V_{GS(th)}$	V _{GS(th)} Temperature Coefficient	V _{GS} = V _{DS} , I _D = -250 µA		4		mV/°C	
gfs	Forward Transconductance	$V_{DS} = -10 V, I_D = -8 A$		10.5		S	

Dynamic and switching Characteristics

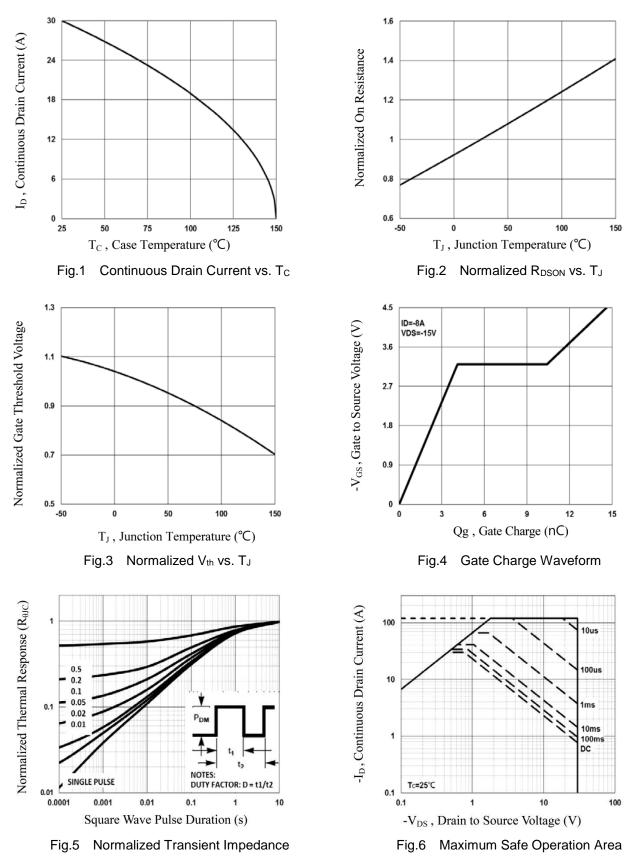
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Q_{g}	Total Gate Charge ^{2,3}			14.6	21	
Qgs	Gate-Source Charge ^{2,3}	$V_{DS} = -15 \text{ V}, V_{GS} = -4.5 \text{ V},$ $I_{D} = -8 \text{ A}$		4.1	6	nC
Q_{gd}	Gate-Drain Charge ^{2,3}			6.3	9	
T _{d(on)}	Turn-On Delay Time ^{2,3}			9	17	
Tr	Rise Time ^{2,3}	V _{DD} = -15V, V _{GS} = -10 V ,		21.8	41	nS
T _{d(off)}	Turn-Off Delay Time ^{2,3}	$R_G = 6 \Omega$, $I_D = -1 A$		59.8	114	113
T _f	Fall Time ^{2,3}			14.4	27	
Ciss	Input Capacitance			1730	2510	
Coss	Output Capacitance	$V_{DS} = -15 V, V_{GS} = 0 V,$ = F = 1 MHz		180	260	pF
Crss	Reverse Transfer Capacitance			125	180	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
ls	Continuous Source Current				-30	А
lsм	Pulsed Source Current	$V_G = V_D = 0 V$, Force Current			-120	А
Vsd	Diode Forward Voltage	$V_{GS} = 0 V$, $I_{S} = 1 A$, $T_{J} = 25^{\circ}C$			-1	V

Note :

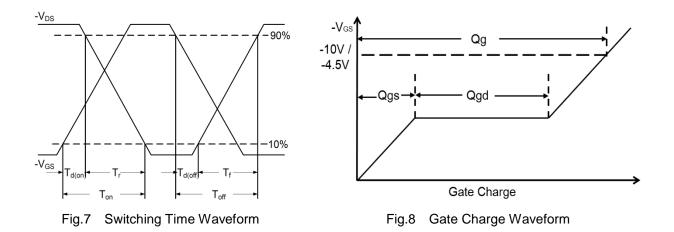
1. Repetitive Rating : Pulsed width limited by maximum junction temperature.


2. The data tested by pulsed , pulse width \leq 300µs, duty cycle \leq 2%.

3. Essentially independent of operating temperature.

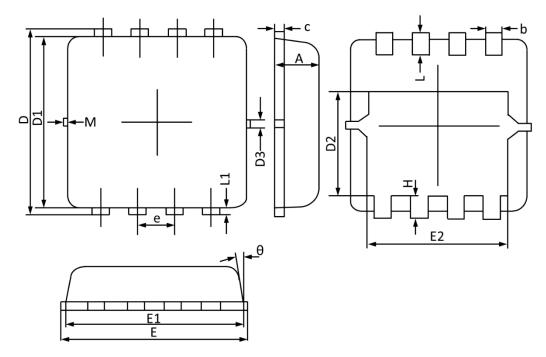
S30P15PPA

Typical Characteristics


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. SUMSEMI (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

www.sumsemi.com

Typical Characteristics (Continued)



Package Information

PPAK3 x 3

Symbol	Dimensions I	n Millimeters	Dimensions	s In Inches	
Symbol	Min	Max	Min	Max	
Α	0.700	0.800	0.028	0.031	
b	0.250	0.350	0.010	0.013	
c	0.100	0.250	0.004	0.009	
D	3.250	3.450	0.128	0.135	
D1	3.000	3.200	0.119	0.125	
D2	1.780	1.980	0.070	0.077	
D3	0.130	REF	0.005	REF	
E	3.200	3.400	0.126	0.133	
E1	3.000	3.200	0.119	0.125	
E2	2.390	2.590	0.094	0.102	
e	0.650	BSC	0.026	BSC	
Н	0.300	0.500	0.011	0.019	
L	0.300	0.500	0.011	0.019	
L1	0.130	REF	0.005	REF	
θ	0°	12°	0 °	12°	
Μ	0.150 REF		0.006 REF		

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved.