

S30P32DNF


30V P-Channel MOSFETs

General Description

These P-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

DFN2020-8 Pin Configuration

BV_{DSS}	R _{DS(ON)} Max.	I _D
-30V	$32 m\Omega$	-6.5A

Features

- -30V, -6.5A, $R_{DS(ON)}Max. = 32m\Omega @V_{GS} = -10V$
- Fast switching
- Green Device Available
- Suit for -4.5V Gate Drive Applications

Applications

- Notebook
- Load Switch
- Battery Protection
- Hand-held Instruments

Absolute Maximum Ratings Tc=25°C unless otherwise noted

Symbol	Parameter	Rating	Units
V _{DS}	Drain-Source Voltage	-30	V
V _{GS}	Gate-Source Voltage	±12	V
I	Drain Current – Continuous (T _C =25°C)	-6.5	А
D	Drain Current – Continuous (T _C =100°C)	-4.3	А
l _{DM}	Drain Current – Pulsed ¹	-42	А
E _{AS}	Single Pulse Avalanche Energy ²	78.4	mJ
AS	Single Pulse Avalanche Current ²	56	A
P	Power Dissipation (T _C =25°C)	1.56	W
P _D	Power Dissipation – Derate above 25°C	0.012	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	°C
TJ	Operating Junction Temperature Range	-55 to 150	°C

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
R _{0JA}	Thermal Resistance Junction to ambient		80	°C/W

Electrical Characteristics (T_J=25 °C, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V , I _D =-250uA	-30			V
$\triangle BV_{DSS} / \triangle T_J$	BV _{DSS} Temperature Coefficient	Reference to 25°C,I _D =-1mA		-0.03		V/°C
I _{DSS}	Drain-Source Leakage Current	V _{DS} =-30V , V _{GS} =0V , T _J =25°C			-1	uA
		V _{DS} =-24V , V _{GS} =0V , T _J =125°C			-10	uA
I _{GSS}	Gate-Source Leakage Current	$V_{GS}=\pm20V$, $V_{DS}=0V$			±100	nA

On Characteristics

R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =-10V , I _D =-4A		29	32	mΩ	
		V _{GS} =-4.5V , I _D =-2A		38	46	mΩ	
V _{GS(th)}	Gate Threshold Voltage	$V_{GS}=V_{DS}$, I_D =-250uA	-0.5	-1.0	-1.5	V	
$ riangle V_{GS(th)}$	V _{GS(th)} Temperature Coefficient			4		mV/°C	
gfs	Forward Transconductance	V _{DS} =-10V , I _D =-3A		9		S	

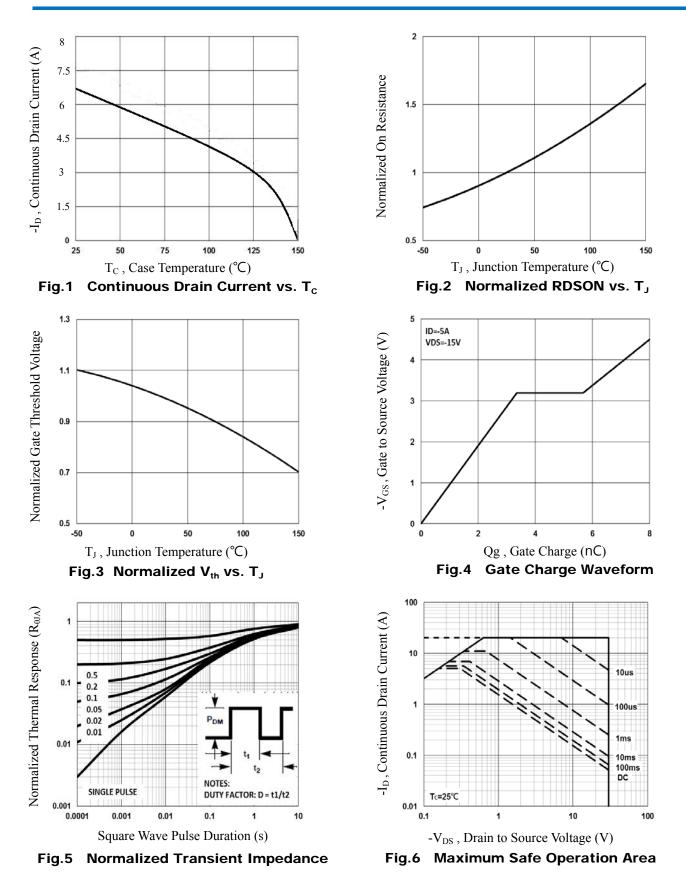
Dynamic and switching Characteristics

Qg	Total Gate Charge ^{2,3}		8	
Q_gs	Gate-Source Charge ^{2,3}	V_{DS} =-15V , V_{GS} =-4.5V , I_D =-5A	3.3	nC
Q_{gd}	Gate-Drain Charge ^{2,3}		2.3	
T _{d(on)}	Turn-On Delay Time ^{2 , 3}		4.6	
Tr	Rise Time ^{2,3}	V_{DD} =-15V , V_{GS} =-10V , R_{G} =6 Ω	14	ns
T _{d(off)}	Turn-Off Delay Time ^{2 , 3}	I _D =-1A	34	115
T _f	Fall Time ^{2,3}		18	
Ciss	Input Capacitance		757	
C _{oss}	Output Capacitance	V_{DS} =-15V , V_{GS} =0V , F=1MHz	122	pF
C _{rss}	Reverse Transfer Capacitance		88	

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Is	Continuous Source Current	$V_G = V_D = 0V$, Force Current			-6.5	А
I _{SM}	Pulsed Source Current				-32	А
V_{SD}	Diode Forward Voltage	V _{GS} =0V , I _S =-1A , T _J =25°C			-1	V

Note :


1. Repetitive Rating : Pulsed width limited by maximum junction temperature.

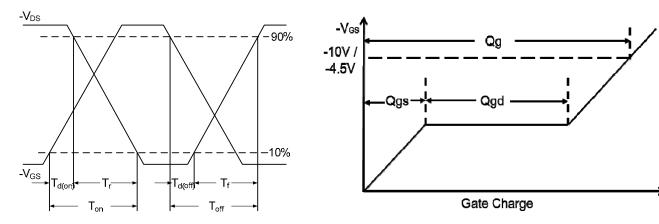
2. The data tested by pulsed , pulse width \leq 300us , duty cycle $\leq\,2\%.$

3. Essentially independent of operating temperature.

S30P32DNF

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **∑SUMSEMI** (and designs) are registered trademarks of SUM Semiconductor Corporation. Copyright SUM Semiconductor Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

S30P32DNF



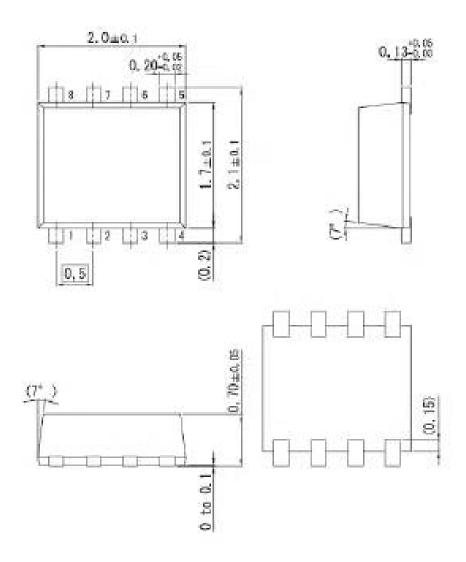

Fig.7 Switching Time Waveform

Fig.8 Gate Charge Waveform

V 1.0

DFN2020-8 PACKAGE INFORMATION

