65V N-Channel MOSFETs

General Description

These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance, provide superior switching performance, and withstand high energy pulse in the avalanche and commutation mode. These devices are well suited for high efficiency fast switching applications.

PPAK3×3 Pin Configuration

$\mathrm{BV}_{\mathrm{DSS}}$	$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$ Max.	I_{D}
65 V	$16 \mathrm{~m} \Omega$	38 A

Features

- 65V,38A, $R_{D S(O N)} M a x .=16 \mathrm{~m} \Omega @ V_{G S}=10 \mathrm{~V}$
- Improved dv/dt capability
- Fast switching
- Green Device Available

Applications

- Motor Drive
- Power Tools
- LED Lighting

Absolute Maximum Ratings $\mathbf{T c}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted

Symbol	Parameter	Rating	Units
$V_{D S}$	Drain-Source Voltage	65 V	V
$\mathrm{~V}_{G S}$	Gate-Source Voltage	$+20 /-20 \mathrm{~V}$	V
I_{D}	Drain Current - Continuous $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	38	A
	Drain Current - Continuous $\left(\mathrm{T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$	24	A
I_{DM}	Drain Current - Pulsed ${ }^{1}$	152	A
E_{AS}	Single Pulse Avalanche Energy ${ }^{2}$	42	mJ
I_{AS}	Single Pulse Avalanche Current ${ }^{2}$	29	A
P_{D}	Power Dissipation $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	63	W
$\mathrm{~T}_{\text {STG }}$	Storage Temperature Range	-50 to 150	${ }^{\circ} \mathrm{C}$
T_{J}	Operating Junction Temperature Range	-50 to 150	${ }^{\circ} \mathrm{C}$

Note 1: Exceed these limits to damage to the device.
Note 2: Exposure to absolute maximum rating conditions may affect device reliability.

Electrical Characteristics ($\mathrm{T}_{\mathrm{J}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$, unless otherwise noted)

Off Characteristics

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{BV}_{\mathrm{DSS}}$	Drain-Source Breakdown Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{uA}$	65			V
$\mathrm{I}_{\mathrm{DSS}}$	Drain-Source Leakage Current	$\mathrm{V}_{\mathrm{DS}}=60 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=25^{\circ} \mathrm{C}$			1	uA
	$\mathrm{V}_{\mathrm{DS}}=48 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~T}_{J}=85^{\circ} \mathrm{C}$			10	uA	
$\mathrm{I}_{\mathrm{GSS}}$	Gate-Source Leakage Current	$\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}$			100	nA

On Characteristics

$\mathrm{R}_{\mathrm{DS}(\mathrm{ON})}$	Static Drain-Source On-Resistance	$\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=12 \mathrm{~A}$		12.6	16	$\mathrm{~m} \Omega$
	$\mathrm{~V}_{\mathrm{GS}}=4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}$		25	33	$\mathrm{~m} \Omega$	
$\mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	Gate Threshold Voltage	$\mathrm{V}_{\mathrm{GS}}=\mathrm{V}_{\mathrm{DS}}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{uA}$	1.2	1.8	2.5	V
$\triangle \mathrm{~V}_{\mathrm{GS}(\mathrm{th})}$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$ Temperature Coefficient			-5		mV / C
gfs	Forward Transconductance	$\mathrm{V}_{\mathrm{DS}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=13 \mathrm{~A}$		38		S

Dynamic and switching Characteristics

Q_{g}	Total Gate Charge ${ }^{2,3}$	$\mathrm{V}_{\mathrm{DS}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=15 \mathrm{~A}$	14	nC
Q_{gs}	Gate-Source Charge ${ }^{2,3}$		3.5	
$Q_{\text {gd }}$	Gate-Drain Charge ${ }^{2,3}$		4.5	
$\mathrm{T}_{\mathrm{d}(\text { (on) }}$	Turn-On Delay Time ${ }^{2,3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{R}_{\mathrm{G}}=6 \Omega \\ & \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A} \end{aligned}$	7.2	ns
T_{r}	Rise Time ${ }^{\text {2,3 }}$		9	
$\mathrm{T}_{\mathrm{d} \text { (off) }}$	Turn-Off Delay Time ${ }^{2,3}$		17	
T_{f}	Fall Time ${ }^{2,3}$		6	
$\mathrm{Ciss}^{\text {is }}$	Input Capacitance	$\mathrm{V}_{\mathrm{DS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	810	pF
$\mathrm{C}_{\text {oss }}$	Output Capacitance		175	
$\mathrm{C}_{\text {rss }}$	Reverse Transfer Capacitance		35	
R_{g}	Gate resistance	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~F}=1 \mathrm{MHz}$	2.2	Ω

Drain-Source Diode Characteristics and Maximum Ratings

Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
I_{s}	Continuous Source Current	$\mathrm{V}_{\mathrm{G}}=\mathrm{V}_{\mathrm{D}}=0 \mathrm{~V}$, Force Current			38	A
$I_{\text {SM }}$	Pulsed Source Current				76	A
$V_{S D}$	Diode Forward Voltage	$\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=1 \mathrm{~A}, \mathrm{~T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$			1	V

Note :

1. Repetitive Rating : Pulsed width limited by maximum junction temperature.
2. $V_{D D}=25 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{~L}=0.1 \mathrm{mH}, \mathrm{I}_{\mathrm{AS}}=29 \mathrm{~A} ., \mathrm{R}_{\mathrm{G}}=25 \Omega$, Starting $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$.
3. The data tested by pulsed, pulse width $\leqq 300$ us, duty cycle $\leqq 2 \%$.
4. Essentially independent of operating temperature.

PPAK3×3 PACKAGE INFORMATION

COMMON DIMENSIONS
(UNITS OF IEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX
A	0.70	0.80	0.90
A1	0.00	0.03	0.05
b	0.24	0.30	0.35
c	0.10	0.15	0.20
D	3.25	3.32	3.40
D1	3.05	3.15	3.25
D2	2.40	2.50	2.60
E	3.00	3.10	3.20
E1	1.35	1.45	1.55
e	0.65 BSC.		
H	3.20	3.30	3.40
L	0.30	0.40	0.50
L1	0.10	0.15	0.20
L2	1.13		
REF.			

