Dual-Supply, 4-Bit Voltage Translator/Isolator for I²C Applications

DESCRIPTION

The SUM2104 is a high-performance configurable dual-voltage-supply translator for bi-directional voltage translation over a wide range of input and output voltages levels. The SUM2104 also works in a push-pull environment.

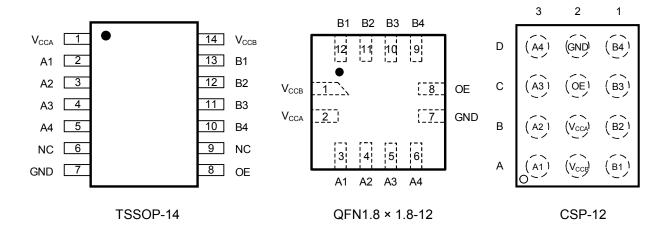
It is intended for use as a voltage translator between I^2C -Bus compliant masters and slaves. Internal 10 k Ω pull-up resistors are provided.

The device is designed so the A port tracks the V_{CCA} level and the B port tracks the V_{CCB} level. This allows for bi-directional A/B-port voltage translation between any two levels from 1.65 V to 5.5 V. V_{CCA} can equal V_{CCB} from 1.65 V to 5.5 V. Either V_{CC} can be powered-up first. Internal power-down control circuits place the device in 3-state if either V_{CC} is removed.

The four ports of the device have automatic direction-sense capability. Either port may sense an input signal and transfer it as an output signal to the other port.

FEATURES

- Bi-Directional Interface between Any Two Levels: 1.65 V to 5.5 V
- No Direction Control Needed
- Internal 10 k Pull-Up Resistors
- System GPIO Resources Not Required when OE tied to V_{CCA}
- I²C-Bus Isolation
- A/B Port V_{OL} = 175 mV (Typical), V_{IL} = 150 mV, I_{OL} = 6 mA
- Open-Drain Inputs/Outputs
- Works in Push Pull Environment
- Accommodates Standard-Mode and Fast-Mode I²C-Bus Devices
- Supports I²C Clock Stretching & Multi-Master
- Fully Configurable: Inputs and Outputs Track V_{CC}
- Non-Preferential Power-Up; Either V_{CC} Can Power-Up First
- Outputs Switch to 3-State if Either V_{CC} is at GND
- Tolerant Output Enable: 5 V
- ESD Protection Exceeds:


B Port: 8 kV HBM ESD (vs. GND & vs. V_{CCB}) All Pins: 4 kV HBM ESD (per JESD22-A114) 2 kV CDM (per JESD22-C101)

ORDER INFORMATION

Model	Package	Packing Option	
	TSSOP-14	SUM2104TS14	Tape and Reel
SUM2104	QFN1.8 × 1.8-12	SUM2104QN12	Tape and Reel
	CSP-12	SUM2104CS12	Tape and Reel

PIN CONFIGURATION (Top View)

PIN DESCRIPTIONS

	Pin		Symbol	Description
TSSOP-14	QFN1.8 × 1.8-12	CSP-12	Symbol	Description
1	2	B2	V _{CCA}	A-Side Power Supply
2,3,4,5	3,4,5,6	A3,B3,C3,D3	A1,A2,A3,A4	A-Side Inputs or 3-State Outputs
7	7	D2	GND	Ground
8	8	C2	OE	Output Enable port, Input
10,11,12,13	9,10,11,12	D1,C1,B1,A1	B4,B3,B2,B1	B-Side Inputs or 3-State Outputs
14	14 1 A2		V _{CCB}	B-Side Power Supply
6,9			NC	

TRUTH TABLE

Outputs
3-State
Normal Operation

Note:

1. If the OE pin is driven LOW, the SUM2104 is disabled and the A1 ~ A4, B1 ~ B4 pins (including dynamic drivers) are forced into 3-state and all four 10 k Ω internal pull-up resisters are decoupled from their respective V_{CC}.

BLOCK DIAGRAM

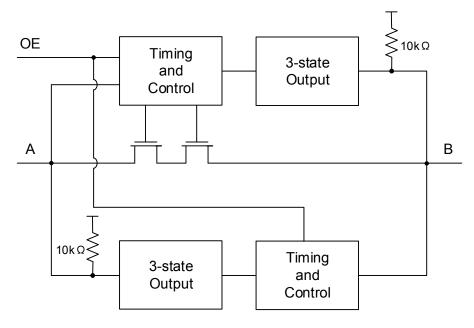


Figure 1. 1 of 4 Channels

FUNCTIONAL DESCRIPTION

Power-Up/Power-Down Sequencing

SUM2104 is a bi-directional level shift. So, translators offer an advantage in that either V_{CC} may be powered up first. This benefit derives from the chip design. When either V_{CC} is at 0 V, outputs are in a high-impedance state. The control input (OE) is designed to track the V_{CCA} supply. A pull-down resistor tying OE to GND should be used to ensure that bus contention, excessive currents, or oscillations do not occur during power-up/-down. The size of the pull-down resistor is based upon the current-sinking capability of the device driving the OE pin. We recommended the power-up and power-down as below:

The recommended power-up sequence is:

- 1. Apply power to the first V_{CC} .
- 2. Apply power to the second V_{CC} .
- 3. Drive the OE input HIGH to enable the device.

The recommended power-down sequence is:

- 1. Drive OE input LOW to disable the device.
- 2. Remove power from either V_{CC} .
- 3. Remove power from the other V_{CC} .

Notes:

2. Alternatively, the OE pin can be hardwired to V_{CCA} to save GPIO pins. If OE is hardwired to V_{CCA} , either V_{CC} can be powered up or down first.

3. All unused inputs and I/O pins must be held at V_{CCI} or GND. V_{CCI} is the V_{CC} associated with the input side.

APPLICATION CIRCUITS

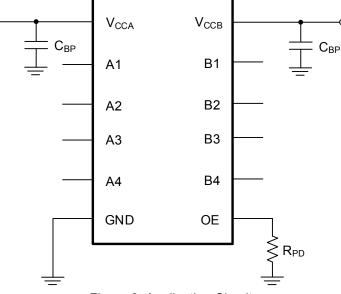


Figure 2. Application Circuit

Note: This electric circuit only supplies for reference.

APPLICATION INFORMATION

SUM2104 has open-drain I/Os and includes a total of four 10 k Ω internal pull-up resistors (R_{PU}) on each of the four data I/O pins, as shown in Figure 2. If a pair of data I/O pins (An/Bn) is not used, both pins should disconnected, eliminating unwanted current flow through the internal R_{PU}s. External R_{PU}s can be added to the I/Os to reduce the total R_{PU} value, depending on the total bus capacitance. The designer is free to lower the total pull-up resistor value to meet the maximum I²C edge rate per the I²C specification (UM10204 rev. 03, June 19, 2007). For example, according to the I²C specification, the maximum edge rate (30% - 70%) during Fast Mode (400 kbit/s) is 300 ns. If the bus capacitance is approaching the maximum 400 pF, a lower total R_{PU} value helps keep the rise time below 300 ns (Fast Mode). Likewise, the I²C specification also specifies a minimum Serial Clock Line High Time of 600 ns during Fast Mode (400 kHz). Lowering the total R_{PU} also helps increase the SCL High Time. If the bus capacitance approaches 400 pF, it may make sense to use the SUM2104, which does not contain internal R_{PU}. Then calculate the ideal external R_{PU} value.

Note:

4. Section 7.1 of the I²C specification provides an excellent guideline for pull-up resistor sizing.

THEORY OF OPERATION

SUM2104 is designed for high-performance level shifting and buffer / repeating in an I^2C application. Figure 1 shows that each bi-directional channel contains two series-N-gates and two dynamic drivers. This hybrid architecture is highly beneficial in an I^2C application where auto-direction is a necessity.

For example, during the following three I²C protocol events:

- 1. Clock Stretching
- 2. Slave's ACK Bit (9th bit = 0) following a Master's Write Bit (8th bit = 0)
- 3. Clock Synchronization and Multi-Master Arbitration

The bus direction needs to change from master-to-slave to slave-to-master without the occurrence of an edge. If there is an I^2C translator between the master and slave in these examples, the I^2C translator must change direction when both A and B ports are LOW. The N-gates can accomplish this task very efficiently because, when both A and B ports are LOW, the N-gates act as a low-resistive short between the A and B ports.

Due to I²C's open-drain topology, I²C masters and slaves are not push/pull drivers. Logic LOWs are "pulled down" (Isink), while logic HIGHs are "let go" (3-state). For example, when the master lets go of SCL (SCL always comes from the master), the rise time of SCL is largely determined by the RC time constant, where R = R_{PU} and C = the bus capacitance. If the SUM2104 is attached to the master [on the A port] and there is a slave on the B port, the N-gates act as a low-resistive short between both ports until either of the port's V_{CC}/2 thresholds are reached. After the RC time constant has reached the V_{CC/2} threshold of either port, the port's edge detector triggers both dynamic drivers to drive their respective ports in the LOW-to-HIGH (LH) direction, accelerating the rising edge. Effectively, two distinct slew rates appear in rise time. The first slew rate (slower) is the RC time constant of the bus. The second slew rate (much faster) is the dynamic driver accelerating the edge.

If both the A and B ports of the translator are HIGH, a high-impedance path exists between the A and B ports because both the N-gates are turned off. If a master or slave device decides to pull SCL or SDA LOW, that device's driver pulls down (I_{sink}) SCL or SDA until the edge reaches the A or B port V_{CC}/2 threshold. When either the A or B port threshold is reached, the port's edge detector triggers both dynamic drivers to drive their respective ports in the HIGH-to-LOW (HL) direction, accelerating the falling edge.

V_{OL} vs. I_{OL}

The I²C specification mandates a maximum V_{IL} (I_{OL} of 3 mA) of V_{CC} × 0.3 and a maximum V_{OL} of 0.4 V. If there is a master on the A port of an I²C translator with a V_{CC} of 1.65 V and a slave on the I²C translator B port with a V_{CC} of 3.3 V, the maximum V_{IL} of the master is (1.65 V x 0.3) 495 mV. The slave could legally transmit a valid logic LOW of 0.4 V to the master.

If the I²C translator's channel resistance is too high, the voltage drop across the translator could present a V_{IL} to the master greater than 495 mV. To complicate matters, the I²C specification states that 6 mA of I_{OL} is recommended for bus capacitances approaching 400 pF. More I_{OL} increases the voltage drop across the I²C translator. The I²C application benefits when I²C translators exhibit low V_{OL} performance.

I²C Bus Isolation

The SUM2104 supports I²C-Bus isolation for the following conditions:

- ♦ Bus isolation if bus clear
- \diamond Bus isolation if either V_{CC} goes to ground

Bus Clear

Because the I^2C specification defines the minimum SCL frequency of DC, the SCL signal can be held LOW forever; however. This condition shuts down the I^2C bus. The I^2C specification refers to this condition as "Bus Clear." In Figure 3; if slave #2 holds down SCL forever, the master and slave #1 are not able to communicate because the SUM2104 passes the SCL stuck-LOW condition from slave #2 to slave #1 and as the master. However, if the OE pin is pulled LOW (disabled), both ports (A and B) are 3-stated. This results in the SUM2104 isolating slave #2 from the master and slave #1, allowing full communication between the master and slave #1.

V_{cc} to GND

If slave #2 is a camera that is suddenly removed from the I²C bus, resulting in V_{CCB} transitioning from a valid V_{CC} (1.65 V ~ 5.5 V) to 0 V; the SUM2104 automatically forces SCL and SDA on both its A and B ports into 3-state. Once V_{CCB} has reached 0 V, full I²C communication between the master and slave #1 remains undisturbed.

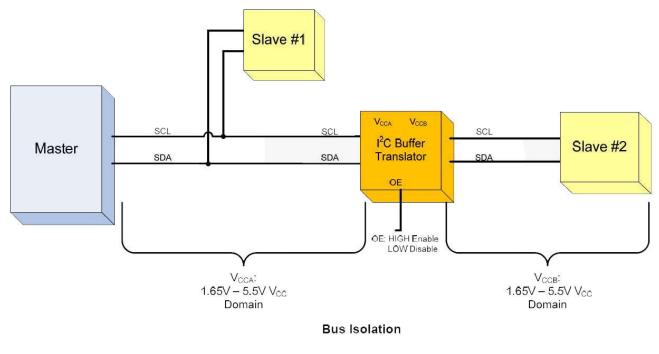


Figure 3. Bus Isolation

ABSOLUTE MAXIMUM RATINGS

Symbol	Pa	rameter	Min	Мах	Unit
V_{CCA}, V_{CCB}	Supply Voltage		-0.5	7.0	
		A Port	-0.5	7.0	V
V _{IN}	DC Input Voltage	B Port	-0.5	7.0	
		Control Input (OE)	-0.5	7.0	
		An Outputs 3-State	-0.5	7.0	
V	Output Voltage ⁽¹⁾	Bn Outputs 3-State	-0.5	7.0	V
Vo		An Outputs Active	-0.5	V _{CCA} + 0.5 V	
		Bn Outputs Active	-0.5	V _{CCB} + 0.5 V	
I _{IK}	DC Input Diode Current	At V _{IN} < 0 V		-50	
1	DC Output Diada Current	At $V_0 < 0 V$		-50	
Ι _{ΟΚ}	DC Output Diode Current	At $V_0 > V_{CC}$		+50	mA
I _{OH} /I _{OL}	DC Output Source/Sink Cur	rrent	-50	+50	
I _{cc}	DC V _{CC} or Ground Current	per Supply Pin		±100	
PD	Power Dissipation	At 400 kHz		0.129	mW
T _{STG}	Storage Temperature Rang	e	-65	+150	°C
		Human Body Model, B-Port Pins		8	
ESD	Electrostatic Discharge Capability	Human Body Model, All Pins (JESD22-A114)		4	kV
		Charged Device Mode, JESD22-C101		2	

Note:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

1. $I_{\rm O}$ absolute maximum rating must be observed.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latest datasheet.

www.sumsemi.com.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pa	rameter	Min	Мах	Unit
V_{CCA}, V_{CCB}	Power Supply Operati	ower Supply Operating			V
		A-Port	0	5.5	
V _{IN}	Input Voltage ⁽²⁾	Itage ⁽²⁾ B-Port		5.5	V
		Control Input (OE)	0	V _{CCA}	
T _A	Operating Temperature	e	-40	+85	°C

DC ELECTRICAL CHARACTERISTICS

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

Symbol	Parameter		Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Тур	Мах	Unit
M	High Level	Data Inputs An		1.65~5.5	1.65~5.5	V _{CCA} - 0.4			V
VIHA	Input Voltage A	Contro	ol Input OE	1.65~5.5	1.65~5.5	$0.7V_{CCA}$			V
V _{IHB}	High Level Input Voltage B	Data Inputs Bn		1.65~5.5	1.65~5.5	V _{CCB} - 0.4			V
N (Low Level Input		nputs An	1.65~5.5	1.65~5.5			0.4	v
VILA	Voltage A	Contro	ol Input OE	1.65~5.5	1.65~5.5			0.3V _{CCA}	V
VILB	Low Level Input Voltage B	Data I	nputs Bn	1.65~5.5	1.65~5.5			0.4	V
V _{OL}	Low Level Output Voltage	V _{IL} = 0.15V I _{OL} = 6 mA		1.65~5.5	1.65~5.5			0.4	V
ار	Input Leakage Current		ol Input OE, ∕ _{CCA} or GND	1.65~5.5	1.65~5.5			±1.0	μA
1	Power-Off	An	V_{IN} or $V_O = 0 V$ to 5.5V	0	5.5			±2.0	
I _{OFF}	Leakage Current	Bn	V_{IN} or $V_O = 0 V$ to 5.5 V	5.5	0			±2.0	μA
		An Bn	$V_0 = 0 V$ to 5.5 V, OE = V _{IL}	5.5	5.5			±2.0	
I _{OZ}	3-State Output Leakage ⁽²⁾	An	$V_0 = 0 V$ to 5.5 V, OE = Don't care	5.5	0			±2.0	μA
		Bn	$V_0 = 0 V$ to 5.5 V, OE = Don't care	0	5.5			±2.0	
I _{CCA/B}	Quiescent Supply Current	$V_{IN} = V_{IO}$	/ _{CCI} or Floating,	1.65 ~ 5.5	1.65 ~ 5.5			5.0	μΑ

DC ELECTRICAL CHARACTERISTICS (Continued)

 $T_A = -40^{\circ}C$ to +85°C.

Symbol	Parameter	Conditions	V _{CCA} (V)	V _{CCB} (V)	Min	Тур	Мах	Unit
I _{CCZ}	Quiescent Supply Current	$V_{IN} = V_{CCI}$ or GND, $I_O = 0$, OE = V_{IL}	1.65 ~ 5.5	1.65 ~ 5.5			5.0	μA
l	Quiescent	V_{IN} = 5.5V or GND, I_{O} = 0,	0	1.65 ~ 5.5			-2.0	
I _{CCA}	Supply Current ⁽²⁾	OE = Don't Care, Bn to An	1.65 ~ 5.5	0			2.0	μA
	Quiescent	$V_{IN} = 5.5V \text{ or GND},$	1.65 ~ 5.5	0			-2.0	
I _{CCB}	Supply Current ⁽²⁾	I _O = 0, OE = Don't Care, An to Bn	0	1.65 ~ 5.5			2.0	μA
R _{PU}	Resistor Pull-up Value	V _{CCA} & V _{CCB} Sides	1.65 ~ 5.5	1.65 ~ 5.5		10		kΩ

Notes:

- 1. This table contains the output voltage for static conditions. Dynamic drive specifications are given in Dynamic Output Electrical Characteristics.
- 2. "Don' t Care" indicates any valid logic level.
- 3. V_{CCI} is the V_{CC} associated with the input side.
- 4. Reflects current per supply, V_{CCA} or V_{CCB} .

DYNAMIC OUTPUT ELECTRICAL CHARACTERISTICS

Output Rise / Fall Time⁽⁵⁾

Output load: $C_L = 50 \text{ pF}$, $R_{PU} = NC$, push / pull driver, and $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

			۷a	(6) CCO		
Symbol	Parameter	4.5V to 5.5V	3.0V to 3.6V	2.3V to 2.7V	1.65V to 1.95V	Unit
		Тур.	Тур.	Тур.	Тур.	
t _{rise}	Output Rise Time; A Port, B Port ⁽⁷⁾	3	4	5	7	ns
t _{fall}	Output Fall Time; A Port, B Port ⁽⁸⁾	1	1	1	1	ns

Notes:

5. Output rise and fall times guaranteed by design simulation and characterization; not production tested.

6. V_{CCO} is the V_{CC} associated with the output side.

7. See Figure 8.

8. See Figure 9.

Maximum Data Rate

Output load: $C_L = 50 \text{ pF}$, $R_{PU} = NC$, push / pull driver, and $T_A = -40^{\circ}C$ to $+85^{\circ}C$.

			۷	ССВ		-	
V _{CCA}	Direction	4.5V to 5.5V	3.0V to 3.6V	2.3V to 2.7V	1.65V to 1.95V	Unit	
		Minimums					
	A to B	28	23	22	22	MUH	
4.5 V to 5.5 V	B to A	28	26	18	10	MHz	
3.0 V to 3.6 V	A to B	26	23	19	11	Muə	
3.0 V 10 3.0 V	B to A	23	23	13	10	MHz	
2.3 V to 2.7 V	A to B	18	13	13	9	Muə	
2.3 V 10 2.7 V	B to A	22	19	13	9	MHz	
1 65 V to 1 05 V	A to B	10	10	9	8	M⊔⇒	
1.65 V to 1.95 V	B to A	22	11	9	8	MHz	

Open-Drain Date Rate

V _{CCA}	Direction	V _{CCB}	Test condition	Date Rate	Unit
19\/	A to B	1.8 V ~ 5.5 V	I/O port parallel 1k resistance to	1	Mbps
1.8 V ~ 5.5 V	B to A		power supply	1	Mbps

AC CHARACTERISTICS (9)

					Va	св				
Symbol	Parameter	4.5 V t	o 5.5 V	3.0 V t	o 3.6 V	2.3 V t	o 2.7 V	1.65 V t	o 1.95 V	Unit
	-	Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	
V _{CCA} =4.	5 V to 5.5 V									
+	A to B	1	3	1	3	1	3	1	3	20
t _{PLH}	B to A	1	3	2	4	3	5	4	7	ns
+	A to B	2	4	3	5	4	6	5	7	20
t _{PHL}	B to A	2	4	2	5	2	6	5	7	ns
1	OE to A	4	5	6	10	5	9	7	15	22
t _{PZL}	OE to B	3	5	4	7	5	8	10	15	ns
1	OE to A	65	100	65	105	65	105	65	105	ns
t _{PLZ}	OE to B	5	9	6	10	7	12	9	16	
V _{CCA} = 3.	0 V to 3.6 V									
4	A to B	2.0	5.0	1.5	3.0	1.5	3.0	1.5	3.0	22
t _{PLH}	B to A	1.5	3.0	1.5	4.0	2.0	6.0	3.0	9.0	ns
1	A to B	2.0	4.0	2.0	4.0	2.0	5.0	3.0	5.0	22
t _{PHL}	B to A	2.0	4.0	2.0	4.0	2.0	5.0	3.0	5.0	ns
	OE to A	4.0	8.0	5.0	9.0	6.0	11.0	7.0	15.0	
t_{PZL}	OE to B	4.0	8.0	6.0	9.0	8.0	11.0	10.0	14.0	ns
4	OE to A	100	115	100	115	100	115	100	115	
t _{PLZ}	OE to B	5	10	4	8	5	10	9	15	ns
t _{skew}	A Port,B Port ⁽¹⁰⁾	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns

Output Load: C_L = 50 pF, R_{PU} = NC, push / pull driver, and T_A = -40°C to +85°C.

AC CHARACTERISTICS (Continued)

					Vo	СВ				
Symbol	Parameter	4.5 V t	4.5 V to 5.5 V		o 3.6 V	2.3 V t	o 2.7 V	1.65 V t	o 1.95 V	Unit
		Тур.	Max.	Тур.	Max.	Тур.	Max.	Тур.	Max.	
V _{CCA} = 2.	3 V to 2.7 V			•	•		•	1		
1	A to B	2.5	5.0	2.5	5.0	2.0	4.0	1.0	3.0	
t _{PLH}	B to A	1.5	3.0	2.0	4.0	3.0	6.0	5.0	10.0	ns
4	A to B	2.0	5.0	2.0	5.0	2.0	5.0	3.0	6.0	
t _{PHL}	B to A	2.0	5.0	2.0	5.0	2.0	5.0	3.0	6.0	ns
	OE to A	5.0	10.0	5.0	10.0	6.0	12.0	9.0	18.0	
t _{PZL}	OE to B	4.0	8.0	4.5	9.0	5.0	10.0	9.0	18.0	ns
t _{PLZ}	OE to A	100	115	100	115	100	115	100	115	
	OE to B	65	110	62	110	65	115	12	25	ns
t _{skew}	A Port,B Port ⁽¹⁰⁾	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns
V _{CCA} = 1.	65 V to 1.95 \	/				1		1		
	A to B	4	7	4	7	5	8	5	10	
t _{PLH}	B to A	1.0	2.0	1.0	2.0	1.5	3.0	5.0	10.0	ns
	A to B	5	8	3	7	3	7	3	7	
t _{PHL}	B to A	4	8	3	7	3	7	3	7	ns
	OE to A	11	15	11	14	14	28	14	23	
t _{PZL}	OE to B	6	14	6	14	6	14	9	16	ns
	OE to A	75	115	75	115	75	115	75	115	
t _{PLZ}	OE to B	75	115	75	115	75	115	75	115	ns
t _{skew}	A Port,B Port ⁽¹⁰⁾	0.5	1.5	0.5	1.0	0.5	1.0	0.5	1.0	ns

Output Load: C_L = 50 pF, R_{PU} = NC, push / pull driver, and T_A = -40°C to +85°C.

Notes:

9. AC characteristics are guaranteed by design and characterization.

10. Skew is the variation of propagation delay between output signals and applies only to output signals on the same port (An or Bn) and switching with the same polarity (LOW-to-HIGH or HIGH-to-LOW) (see Figure 11). Skew is guaranteed; not production tested.

CAPACITANCE

T_A = +25°C.

Symbol	Parameter	Conditions	Тур.	Unit
C _{IN}	Input Capacitance Control Pin (OE)	$V_{CCA} = V_{CCB} = GND$	2.2	pF
C _{I/O}	Input/Output Capacitance, An, Bn	$V_{CCA} = V_{CCB} = 5.0 \text{ V}, \text{ OE} = \text{GND}$	13	pF

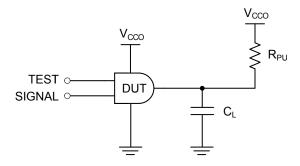
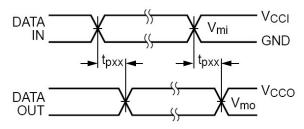


Figure 4. AC Test Circuit

Table 1. Propagation Delay Table ⁽¹¹⁾

Test	Input Signal	Output Enable Control
t _{PLH} , t _{PHL}	Data Pulses	V _{CCA}
t _{PZL} (OE to An, Bn)	0 V	LOW to HIGH Switch
t _{PLZ} (OE to An, Bn)	0 V	HIGH to LOW Switch


Note:

11. For t_{PZL} and t_{PLZ} testing, an external 2.2 k Ω pull-up resister to V_{CCO} is required in order to force the I/O pins high while OE is Low because when OE is low, the internal 10 k Ω R_{PU}s are decoupled from their respective V_{CC}'s.

Table 2. AC Load Table

V _{cco}	CL	RL
1.8 ± 0.15 V	50 pF	NC
2.5 ± 0.2 V	50 pF	NC
3.3 ± 0.3 V	50 pF	NC
5.0 ± 0.5 V	50 pF	NC

TIMING DIAGRAMS

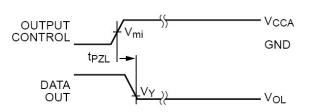
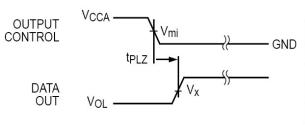
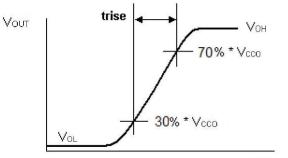
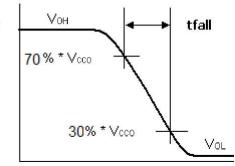



Figure 6. 3-STATE Output Low Enable Time⁽¹²⁾


Figure 5. Waveform Inverting and Non-Inverting Functions⁽¹²⁾



Symbol	V _{cc}
V _{mi} ⁽¹³⁾	V _{CCI} / 2
V _{mo}	V _{CCO} / 2
V _X	0.5 x V _{CCO}
V _Y	0.1 x V _{CCO}

Figure 7. 3-STATE Output High Enable Time⁽¹²⁾

Vout

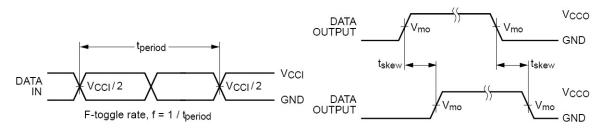
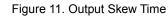
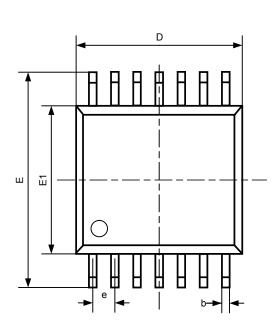

Time

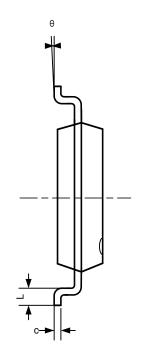
Figure 8. Active Output Rise Time

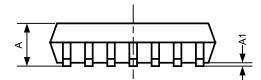

Figure 9. Active Output Fall Time

Time

Notes:


13. $V_{CCI} = V_{CCA}$ for control pin OE or Vmi = (V_{CCA} / 2).

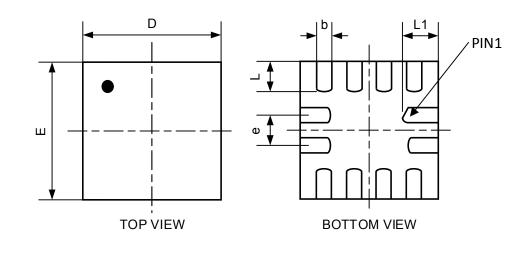

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. ∑SUMSEMI (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. www.sumsemi.com.

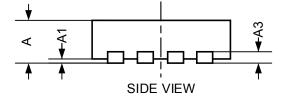


PACKAGE OUTLINE

TSSOP-14

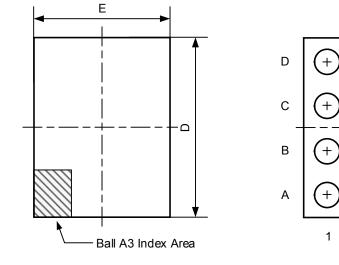
Sumb al	Dimensions in Millimeters	
Symbol	Min	Мах
A		1.20
A1	0.05	0.15
b	0.19	0.30
с	0.15REF	
D	4.90	5.10
E	6.20	6.60
E1	4.30	4.50
e	0.65BSC	
L	0.50	0.75
θ	0°	8°


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved.

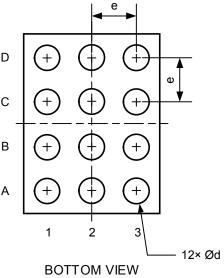

All other trademarks mentioned are the property of their respective owners.

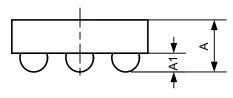
PACKAGE OUTLINE

QFN1.8 × 1.8-12



Querchal		Dimensions in Millimeters	
Symbol	Min	Nom	Max
A	0.50	0.55	0.60
A1	0.00		0.05
A3	0.15REF		
D	1.75	1.80	1.85
E	1.75	1.80	1.85
b	0.15	0.20	0.25
е	0.40BSC		
L	0.35	0.40	0.45
L1	0.42REF		




PACKAGE OUTLINE

CSP-12

TOP VIEW

SIDE VIEW

Symbol	Dimensions in Millimeters		
Symbol	Min	Мах	
A		0.625	
A1	0.150	0.190	
D	1.830	1.890	
E	1.330	1.390	
d	0.210	0.250	
e	0.500BSC		