

Low Voltage, SPDT 1Ω Analog Switch

DESCRIPTION

The SUM3005 is low on-resistance (1 Ω), fast single-pole double-throw (SPDT) CMOS switch with operation range +1.8 V ~ +5.5 V. The SUM3005 is designed for low operating voltage, high current switching of signal gating, chopping, modulation or demodulation (modem), and speaker output for cell phone applications.

The device contains a break-before-make (BBM) feature. The control input, IN, tolerates input drive signals up to 5.5 V, independent of supply voltage.

All devices are specified for the temperature range of -40°C to +125°C. The SUM3005 Dual is available in Green DFN3 \times 3-10 and MSOP-10 packages.

FEATURES

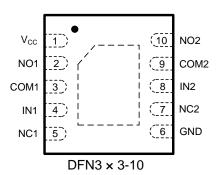
On-Resistance: 1 Ω (TYP)-3dB Bandwidth: 100 MHz

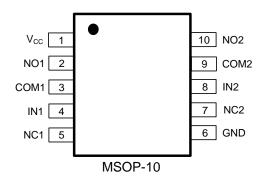
Single-Supply Operation: +1.8 V ~ +5.5 V

Break-Before-Make Switching

Rail-to-Rail Operation

Low Standby Current


TTL/CMOS Compatible


■ Operating Temperature: -40°C ~ +125°C

■ ESD: Human Body Model 3500 V

■ Small Package: DFN3 × 3-10 and MSOP-10

PIN CONFIGURATION (Top View)

ORDER INFORMATION

Model	Package	Ordering Number	Packing Option
SUM3005	DFN3 × 3-10	SUM3005DNB10 Tape and Reel, 300	
	MSOP-10	SUM3005MS10	Tape and Reel, 3000

PIN DESCRIPTIONS

Pin	Symbol	Description	
1	V _{CC}	Power Supply	
2	NO1	Independent Channels	
3	COM1	Common Channels	
4	IN1	Controls	
5	NC1	Independent Channels	
6	GND	Ground (V)	
7	NC2	Independent Channels	
8	IN2	Controls	
9	COM2	Common Channels	
10	NO2	Independent Channels	

TRUTH TABLE

IN1, IN2	NO1, NO2	NC1, NC2		
0	OFF	ON		
1	ON	OFF		

ABSOLUTE MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Supply Voltage	Vcc	-0.5 to +7.5	V
Analog Input Voltage	Vıs	-0.5 to V _{CC} + 0.5	V
Digital Select Input Voltage	Vin	-0.5 to +7.5	V

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latest datasheet.

ELECTRICAL CHARACTERISTICS

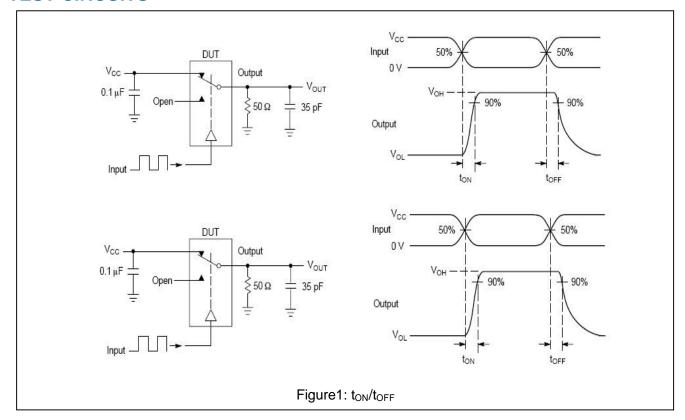
 $V_{+} = 4.5 \text{ V}$ to 5.5 V, GND = 0 V, Full = -40°C to +85°C. Typical values are at $T_{A} = +25$ °C, unless otherwise noted.

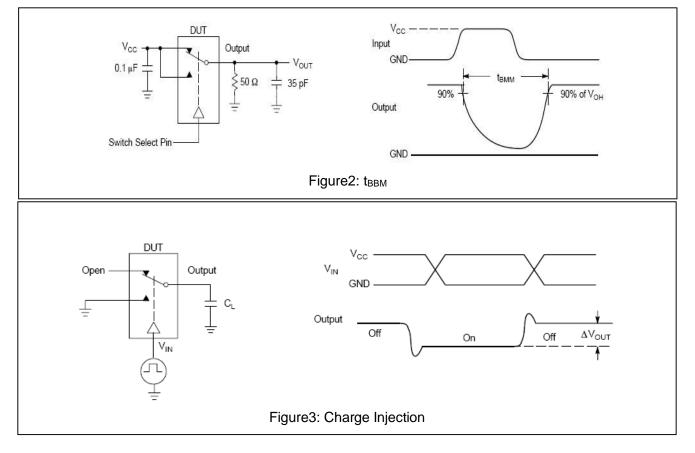
Parameter	Symbol	Conditions		Temp	Min	Тур	Max	Units
Analog Switch	1					ı	I	
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			+25°C	0		V+	V
On-Resistance	Ron	$V_+ = 4.5 \text{ V}, 0 \text{ V} \leq V_{NO} \text{ or V}$ $I_{COM} = -100 \text{ mA}, \text{ Test Circ}$		+25°C		1		Ω
On-Resistance Match Between Channels	ΔRον	$V_+ = 4.5 \text{ V}, 0 \text{ V} \leq V_{NO} \text{ or } V_{NO} = -100 \text{ mA}, \text{ Test Circ}$		+25°C Full		0.02	0.2	Ω
On-Resistance Flatness	RFLAT(ON)	$V_{+} = 4.5 \text{ V}, 0 \text{ V} \leq V_{NO} \text{ or } \text{V}$ $I_{COM} = -100 \text{ mA}, \text{ Test Circ}$	•	+25°C		0.25	0.45	Ω
Source Off Leakage Current	I _{NC(OFF)} , I _{NO(OFF)}	V ₊ = 5.5 V, V _{NO} or V _{NC} = 4		+25°C		0.1		μΑ
Channel On Leakage Current	Inc(on), Ino(on),	$V_{COM} = 1V / 4.5V$ $V_{+} = 5.5 \text{ V}, V_{COM} = 1V / 4.5V,$ $V_{NO} \text{ or } V_{NC} = \text{floating}$		+25°C		0.1	1	μA
Digital Inputs	TCOIVI(ON)	Tho of the meaning		Full			1	
Input High Voltage	VINH	V ₊ = 4.5 V		+25°C	1.6			V
Input Low Voltage	VINL	V ₊ = 4.5 V		+25°C	1.0		0.4	V
Input Leakage Current	I _{IN}	$V_{+} = 4.5 \text{ V}$ $V_{+} = 4.5 \text{ V}, \text{ V}_{IN} = 0 \text{ V or V}_{+}$		+25°C		0.1	0.4	μA
Dynamic Characteristics	TIN	V+ - +.0 V, VIIV - 0 V 01 V	*	120 0		0.1		μπ
Turn-On Time	ton	$V_{+} = 4.5 \text{ V}, \text{ V}_{NO} \text{ or V}_{NC} = 3 \text{ V},$ $R_{L} = 300 \Omega, C_{L} = 35 \text{ pF, Test Circuit 2}$		+25°C		56		ns
Turn-Off Time	toff	$V_{+} = 4.5 \text{ V}$, V_{NO} or $V_{NC} = 3 \text{ V}$, $R_{L} = 300 \Omega$, $C_{L} = 35 \text{ pF}$, Test Circuit 2		+25°C		32		ns
Break-Before-Make Time Delay	t _D	$V_{+}=4.5$ V, V_{NO} or $V_{NC}=3$ V, $R_{L}=300$ Ω , $C_{L}=35$ pF, Test Circuit 3		+25°C		28		ns
Skew	tskew	$R_S = 39 \Omega$, $C_L = 50 pF$, Te	est Circuit 4	+25°C		7		ns
Off Isolation	Oues	$V_{+} = 4.5 \text{ V}, R_{L} = 50 \Omega,$ Signal = 0 dBm, Test	10 MHz	+25°C		-45		dB
Oli isolalioti	O _{ISO}	Circuit 5	1 MHz	+25°C		-65		dB
-3dB Bandwidth	BW	V ₊ = 4.5 V, Signal = 0 dBm,		+25°C		100		MHz
Channel On Capacitance	C _{NC(ON)} , C _{NO(ON)} , C _{COM(ON)}	V ₊ = 4.5 V, f = 1 MHz		+25°C		40		pF
Channel Off Capacitance	CNC(OFF), CNO(OFF), CCOM(OFF)	V ₊ = 4.5 V, f = 1 MHz		+25°C		8.5		pF
Power Requirements	•			•	•	•	•	•
Power Supply Range	V ₊			+25°C	1.8		5.5	V
Power Supply Current	I+	$V_{+} = 5.5 \text{ V}, V_{IN} = 0 \text{ V or } V_{+}$		+25°C		0.1		μA

ELECTRICAL CHARACTERISTICS (continued)

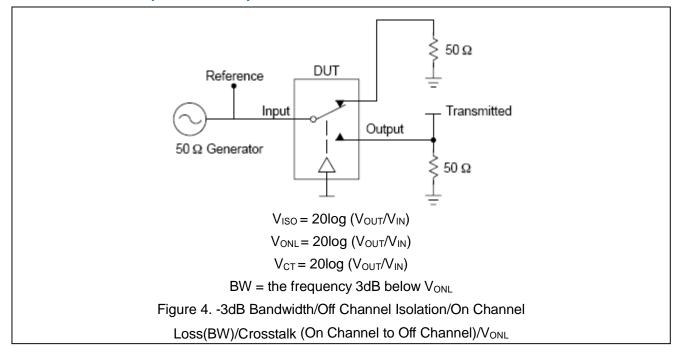
 $V_{+} = 2.7 \text{ V}$ to 3.6 V, GND = 0 V, Full = -40°C to +85°C. Typical values are at $T_{A} = +25$ °C, unless otherwise noted.

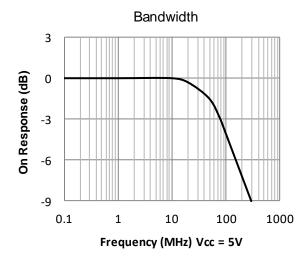
Parameter	Symbol	Conditions		Temp	Min	Тур	Max	Units
Analog Switch								
Analog Signal Range	V _{NO} , V _{NC} , V _{COM}			+25°C	0		V+	V
On-Resistance	Ron	$V_+ = 2.7 \text{ V}, 0 \text{ V} \leq V_{NO} \text{ or } V_{NC} \leq V_+,$ $I_{COM} = -100 \text{ mA}, \text{ Test Circuit 1}$		+25°C		1.4		Ω
On-Resistance Match	AD	V ₊ = 2.7 V, 0 V ≤ V _{NO} or V _{NO}	C ≤ V+,	+25°C		0.03	0.3	
Between Channels	ΔRon	ICOM = -100 mA, Test Circuit 1		Full			0.31	Ω
On Desigtance Flatness	D	$V_{+} = 2.7 \text{ V}, 0 \text{ V} \leq V_{NO} \text{ or } V_{NO}$	C ≤ V+,	+25°C		0.9	1.2	
On-Resistance Flatness	R _{FLAT(ON)}	I _{COM} = -100 mA, Test Circui	t 1	Full			1.25	Ω
Source Off Lookage Current	lucione lucione	$V_{+} = 3.6 \text{ V}, \text{ V}_{NO} \text{ or } \text{V}_{NC} = 3.3 \text{ or } \text{V}_{NC} = 3.$	3V / 0.3V,	+25°C		0.1		
Source Off Leakage Current	INC(OFF), INO(OFF)	$V_{COM} = 0.3V / 3.3V$		Full			1	μA
Channel On Leakage Current	I _{NC(ON)} , I _{NO(ON)} ,	$V_{+} = 3.6 \text{ V}, V_{COM} = 0.3 \text{V} / 3.0 $.3V,	+25°C		0.1		^
Channel On Leakage Current	Ісом(ом)	V_{NO} or V_{NC} = floating		Full			1	μA
Digital Inputs								
Input High Voltage	Vinh	V+ = 2.7 V		+25°C	1.4			V
Input Low Voltage	V _{INL}	V ₊ = 2.7 V		+25°C			0.4	V
Input Leakage Current	lin	V ₊ = 2.7 V, V _{IN} = 0 V or V ₊		+25°C		0.1		μΑ
Dynamic Characteristics								
Turn-On Time	ton	$V_{+} = 3$ V, V_{NO} or $V_{NC} = 1.5$ V, $R_{L} = 300$ Ω , $C_{L} = 35$ pF, Test Circuit 2		+25°C		88		ns
Turn-Off Time	toff	$V_+ = 3 \text{ V}$, V_{NO} or $V_{NC} = 1.5 \text{ V}$, $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, Test Circuit 2		+25°C		46		ns
Break-Before-Make Time Delay	t _D	$V_+ = 3 \text{ V}$, V_{NO} or $V_{NC} = 1.5 \text{ V}$, $R_L = 300 \Omega$, $C_L = 35 \text{ pF}$, Test Circuit 3		+25°C		43		ns
Skew	t _{SKEW}	$R_S = 39 \Omega$, $C_L = 50 pF$, Test	Circuit 4	+25°C		7		ns
		$V_{+} = 3 \text{ V}, \text{ R}_{L} = 50 \Omega, 10 \text{ M}$	lHz	+25°C		-45		dB
Off Isolation	Oiso	Signal = 0 dBm, Test 1 MHz		+25°C		-65		dB
-3dB Bandwidth	BW	$V_{+} = 3 \text{ V}$, Signal = 0 dBm, $R_{L} = 50 \Omega$, Test Circuit 6		+25°C		100		MHz
Channel On Capacitance	C _{NC(ON)} , C _{NO(ON)} , C _{COM(ON)}	V+ = 3 V, f = 1 MHz		+25°C		40		pF
Channel Off Capacitance	Cnc(off), Cno(off), Ccom(off)	V+ = 3 V, f = 1 MHz		+25°C		8.5		pF
Power Requirements								
Power Supply Current	I+	$V_{+} = 3.6 \text{ V}, V_{IN} = 0 \text{ V or } V_{+}$		+25°C		0.1		μA
Note:			L.	J				

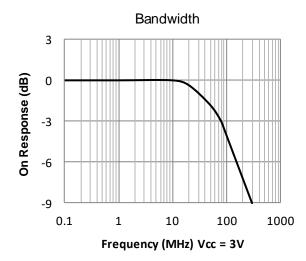

Note:


- 1. Guaranteed by design in -40°C.
- 2. Resistance measurements do not include test circuit or package resistance.
- 3. $\Delta R_{ON} = R_{ON \, (MAX)} R_{ON \, (MIN)}$ between NC1 and NC2 or between NO1 and NO2.
- 4. Flatness is defined as the difference between the maximum and minimum value of on-resistance as measured over the specified analog signal ranges.

.

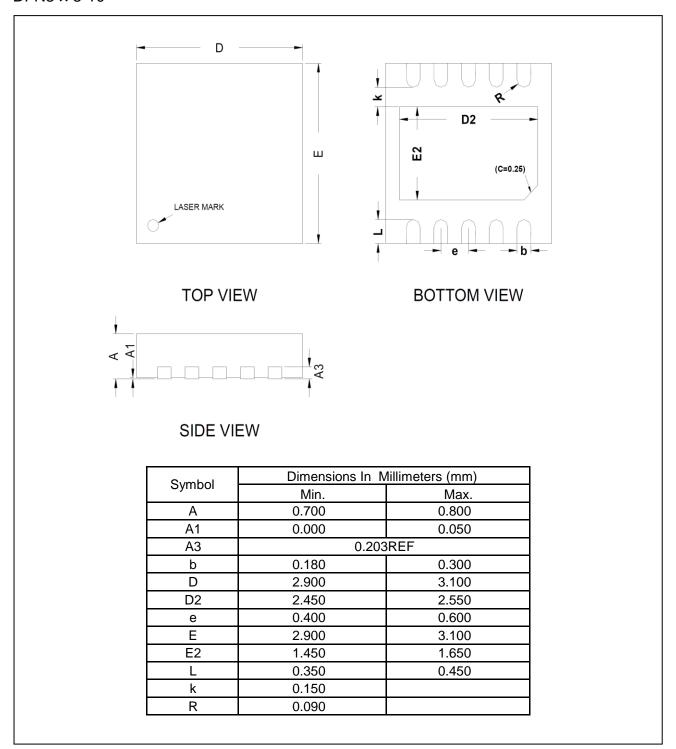

TEST CIRCUITS



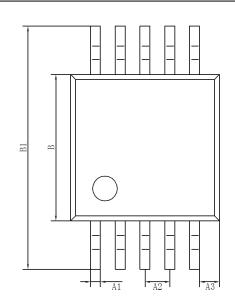


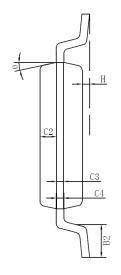
TEST CIRCUITS (Continued)

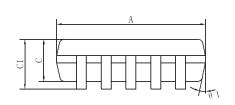
TYPICAL PERFORMANCE CHARACTERISTICS

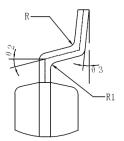


PACKAGE OUTLINE


DFN3 × 3-10






PACKAGE OUTLINE

MSOP-10

Symbol	Dimensions Ir	n Millimeters (mm)	Symbol	Dimensions In Millimeters (mm)			
Cymbol	Min.	Max.	Gyillboi	Min.	Max.		
Α	2.90	3.10	C3	0.152			
A1	0.18	0.25	C4	0.15	0.23		
A2	0.5	0 TYP	Н	0.00	0.09		
A3	0.4	0 TYP	θ	15°TYP4			
В	2.90	3.10	θ1	12°TYP4			
B1	4.70	5.10	θ2	14°TYP			
B2	0.45	0.75	θ3	0° ~ 6°			
С	0.75	0.95	R	0.15TYP			
C1	=	1.100	R1	0.15TYP			
C2	0.32	28 TYP					