

20V 1A High Speed LDO Regulator

DESCRIPTION

The SUM3563 is low noise, LDO Voltage Regulators with enable function that output voltages of 3.3 V, 5.0 V. These characteristics, combined with low noise and good PSRR with low dropout voltage, make this device ideal for portable consumer applications.

The SUM3563 can operate with up to 20 V input. The Devices are available in SOT-223, SOT89-3, DFN2 \times 2-6, DFN3 \times 3-8 and ESOP-8.

FEATURES

- Operating Input Voltage Range: up to 20 V
- Max Output Current: 1 A
- Output Voltage Accuracy: ±2%
- Adjustable Output Voltage Option V_{FB} = 0.64 V
- Standard Fixed Output Voltage Options: 3.3 V, 5.0 V
- Other Output Voltage Options Available on Request
- Standby Current: 160 µA (Typical)
- High Ripple Rejection: 80 dB at 1 kHz
- Packages: SOT-223, SOT89-3, DFN2 × 2-6, DFN3 × 3-8 and ESOP-8
- Dropout: 0.5 V at 1 A when Vout ≥ 2 V

APPLICATIONS

- Consumer and Industrial Equipment Point of Regulation.
- Switching Power Supply Post Regulation
- Battery Chargers
- Hard Drive Controllers

ORDER INFORMATION

Model	Package	Ordering Number	Packing Option	
	SOT-223	SUM3563-XXKD	Tape and Reel, 2500	
	SOT89-3	SUM3563-XXP	Tape and Reel, 1000	
SUM3563	DFN2 × 2-6	SUM3563-ADJDNE6	Tape and Reel, 3000	
	DFN3 × 3-8	SUM3563-ADJDNB8	Tape and Reel, 4000	
	ESOP-8	SUM3563-ADJES8	Tape and Reel, 4000	


*XX: When expressed as 33, the output voltage is 3.3 V; when expressed as 50 the output voltage is 5.0 V;

ADJ: Adjustable Output Voltage, Rang: 0.6 V to 5.5 V.

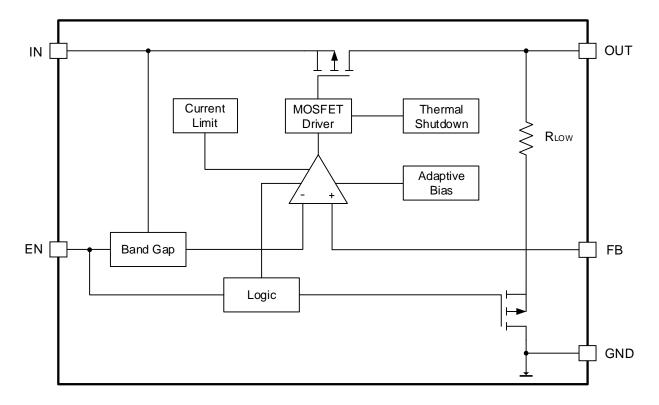
PIN CONFIGURATION (Top View)

DFN2 × 2-6

DFN3 × 3-8

PIN DESCRIPTIONS

2


		Pin			Symbol	Description
SOT-223	SOT89-3	ESOP-8	DFN2 × 2-6	DFN3 × 3-8	Symbol	Description
1	1	5,6,7,8	3	7	GND	Ground.
2	3	3	1	3,4	OUT	Output pin.
3	2	2	6	1,2	IN	Power supply input pin.
		1	4	8	EN	Enable pin.
		4	2	6	FB	This pin is used as an input to the control loop error amplifier and is used to set the output voltage of the LDO.
			5	5	NC	Not connect.
		Exposed Pad	Exposed Pad	Exposed Pad	GND	Exposed thermal pad. Connect to GND for best thermal performance.

Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

(1)

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION

Enable

The SUM3563 delivers the output power when it is set to enable state. When it works in disable state, there is no output power and the operation quiescent current is almost zero. The enable pin (EN) is active high.

Shutdown

Turn off the device by forcing the EN pin to drop below $V_{EN(LO)}$. If shutdown capability is not required, connect EN to IN. The SUM3563 has an internal pulldown MOSFET that connects an $R_{PULLDOWN}$ resistor to ground when the device is disabled. The discharge time after disabling depends on the output capacitance (C_{OUT}) and the load resistance (R_L) in parallel with the pulldown resistor ($R_{PULLDOWN}$). Formula 1 calculates the time constant:

Over-Temperature Protection

τ

The over-temperature protection function will turn off the P-MOSFET when the junction temperature exceeds 150°C (typical). Once the junction temperature cools down by approximately 20°C the regulator will automatically resume operation.

Current-Limit Protection

The SUM3563 provides current limit function to prevent the device from damages during over-load or shortedcircuit condition. This current is detected by an internal sensing transistor.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Rating	Unit
Input Voltage	VIN	up to 20	V
Output Current	Іоит	0 to 1	А
Operating Ambient Temperature	TA	-40 to 85	°C
Effective Input Ceramic Capacitor Value ⁽¹⁾	Cin	1 to 10	μF
Effective Output Ceramic Capacitor Value ⁽¹⁾	Соит	1 to 10	μF
Input and Output Capacitor Equivalent Series Resistance (ESR)	ESR	5 to 100	mΩ

(1) The capacitor is a chip capacitor, and larger capacitance value is required if electrolytic capacitor is used.

ABSOLUTE MAXIMUM RATINGS

Parameter		Rat	ting	Unit
Input V	/oltage ⁽¹⁾	2	24	V
Output	Voltage	0.65 to 6		V
Chip E	nable Input	-0.3	to 22	V
Maxim	um Junction Temperature	1:	50	°C
Storage Temperature		-65 te	o 150	°C
ESD	HBM ⁽²⁾	20	00	V
E9D	CDM ⁽²⁾	1500		V
Curren	t Maximum Rating ⁽³⁾	200		mA
		SOT-223	80	°C/W
		SOT89-3	120	°C/W
Thermal Characteristics, Thermal Resistance, Junction-to-Air (4)		DFN2 × 2-6	105	°C/W
		DFN3 × 3-8	65	°C/W
		ESOP-8	60	°C/W

NOTES:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- (1) Refer to ELECTRICAL CHARACTERISTIS and APPLICATION INFORMATION for Safe Operating Area.
- (2) This device series incorporates ESD protection and is tested by the following methods: ESD Human Body Model tested per EIA/JESD22-A114 CDM tested per JESD22-C101
- (3) Latch up Current Maximum Rating tested per JEDEC78
- (4) This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latest datasheet.

ELECTRICAL CHARACTERISTICS

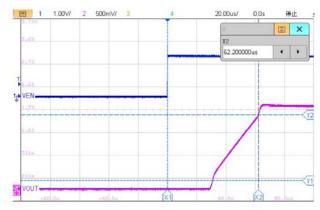
Parameter	Symbol	Test Co	nditions	Min	Тур	Max	Unit
Operating Input Voltage	Vin					20	V
	Mauri	T _A = +25°C		-2%		+2%	V
Output Voltage	Vout	$-40^{\circ}C \le T_A \le 85^{\circ}C$		-3%		+3%	V
Reference Voltage	V _{FB}	$T_A = +25^{\circ}C$			0.64		V
Line Regulation	RegLINE	$2.5 \text{ V} \leq \text{V}_{\text{IN}} \leq 20 \text{ V}, \text{ I}_{\text{OU}}$	JT = 10 mA		0.05	0.20	%/V
			0.65 V ≤ V _{OUT} < 1 V			2500	
		-40°C ≤ T _A ≤ 125°C,	1 V ≤ V _{OUT} < 1.5 V			2000	
Dropout Voltage	Vdrop	V _{IN} ≥ 2.5 V,	1.5 V ≤ V _{OUT} < 2 V			1000	mV
		I _{ОUT} = 1 А	$2 \text{ V} \leq \text{V}_{\text{OUT}} < 2.5 \text{ V}$			800	
			2.5V ≤ V _{OUT} < 5.5 V		450	598	
Load Regulation	Regload	1 mA ≤ I _{OUT} ≤ 800 mA V _{IN} = V _{OUT} + 1 V	Α,			40	mV
Current Limit	ILMT	VIN = VOUT + 1 V		1.04	1.3		Α
Short Circuit Current Limit	ISHORT	Vout = 0 V		350			mA
Quiescent Current	la	I _{OUT} = 0 mA, (R1+R2) > 100 kΩ			160	190	μA
Standby Current	IQ_OFF	V _{EN} = 0 V, T _A = 25°C			0.1	1	μA
EN Pin Threshold Voltage	Venh	EN Input Voltage "H"		1.2			V
EN Pin Threshold Voltage	VENL	EN Input Voltage "L"				0.4	V
EN Pin Current	I _{EN}	$V_{EN} \le V_{IN} \le 20 \text{ V}$			1		μA
			f = 1 kHz		80		
Power Supply Rejection Ratio	PSRR	$V_{IN} = V_{OUT} + 1 V,$ Iout = 50 mA,	f = 100 kHz		70		dB
T(dilo		1001 – 00 111 (,	f = 1M kHz		65		
Output Noise Voltage	е _N	$V_{IN} = V_{OUT} + 1 V$, $I_{OUT} = 1 mA$, f = 10 Hz to 100 kHz, $V_{OUT} = 3 V$, $C_{OUT} = 1 \mu F^{(2)}$			60		μV _{RMS}
Active Output Discharge Resistance (A option only)	RLOW	V _{IN} = 4 V, V _{EN} = 0 V			70		Ω
Thermal Shutdown Temperature	T _{SD}	Temperature Increasing from $T_A = +25^{\circ}C^{(2)}$			150		°C
Thermal Shutdown Hysteresis	T _{SDH}	Temperature Falling from TSD ⁽²⁾			25		°C

(1) Here V_{IN} means internal circuit can work normal. If $V_{IN} < V_{OUT}$, Output voltage follow V_{IN} ($I_{OUT} = 1$ mA), circuit is safety.

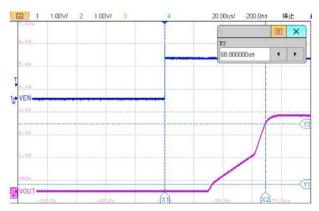
(2) Guaranteed by design and characterization. not a FT item.

(3) VDROP FT test method: test the VOUT voltage at VSET + VDROP(MAX) with 1 A output current.

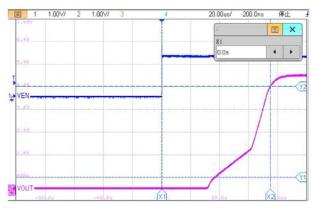
(4) The minimum operating voltage is 2.5 V. $V_{DROP} = V_{IN(MIN)} - V_{OUT}$.

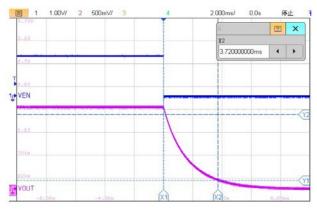

SUMSEMI

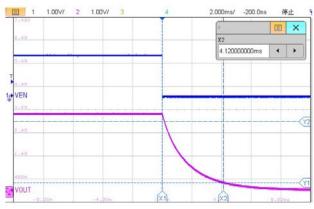
TYPICAL PERFORMANCE CHARACTERISTICS

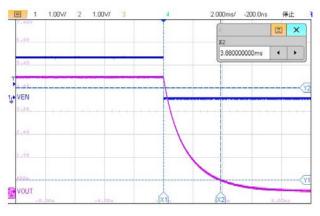

Note: Typical Characteristics are intended to be used as reference data; they are not guaranteed.

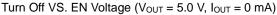
($V_{IN} = V_{OUT} + 1 V$, $I_{OUT} = 1 mA$, $C_{IN} = Ceramic 10 \mu F$, $C_{OUT} = Ceramic 10 \mu F$)


TON and TOFF

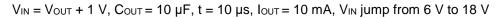

Turn On VS. EN Voltage (V_{OUT} = 1.8 V, I_{OUT} = 0 mA)

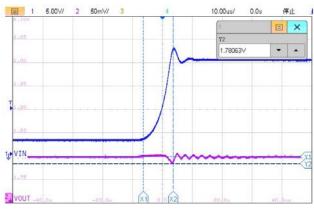

Turn On VS. EN Voltage (Vout = 3.3 V, Iout = 0 mA)

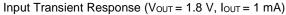

Turn On VS. EN Voltage (V_{OUT} = 5.0 V, I_{OUT} = 0 mA)

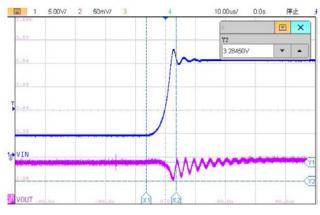


Turn Off VS. EN Voltage (Vout = 1.8 V, Iout = 0 mA)

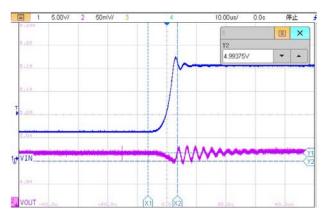

Turn Off VS. EN Voltage (V_{OUT} = 3.3 V, I_{OUT} = 0 mA)

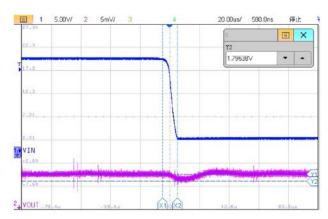


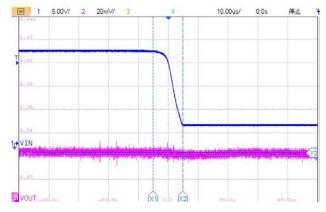


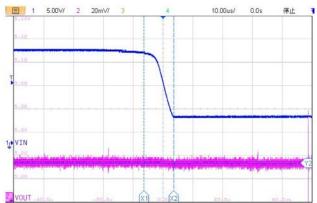

SUMSEMI

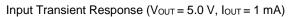
Input Transient Response





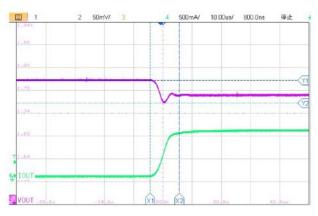

Input Transient Response (Vout = 3.3 V, Iout = 1 mA)

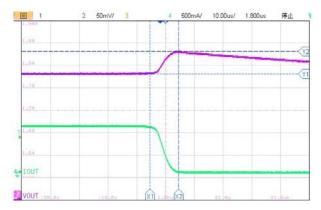

Input Transient Response (Vout = 5.0 V, Iout = 1 mA)



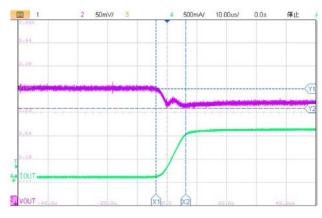
Input Transient Response (V_{OUT} = 1.8 V, I_{OUT} = 1 mA)

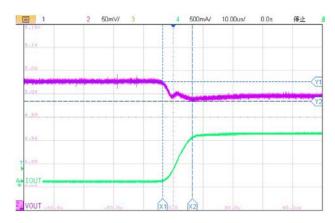
Input Transient Response (Vout = 3.3 V, Iout = 1 mA)

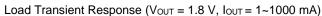


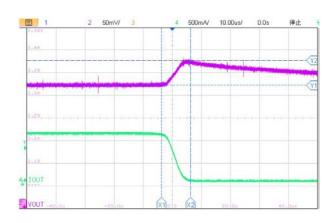

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **∑SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. www.sumsemi.com.

SUMSEMI


Load Transient Response




Load Transient Response (Vout = 1.8 V, Iout = 1~1000 mA)

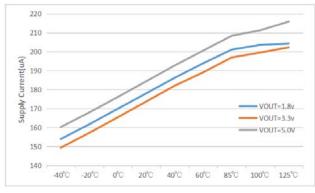


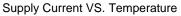
Load Transient Response (V_{OUT} = 3.3 V, I_{OUT} = 1~1000 mA)

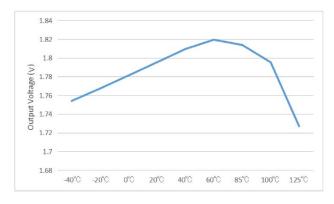


Load Transient Response (Vout = 5.0 V, Iout = 1~1000 mA)

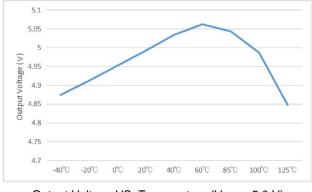
Load Transient Response (Vout = 3.3 V, Iout = 1~1000 mA)

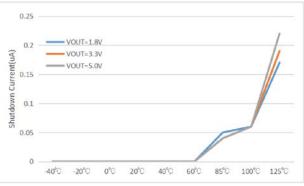

Load Transient Response (Vout = 5.0 V, Iout = 1~1000 mA)

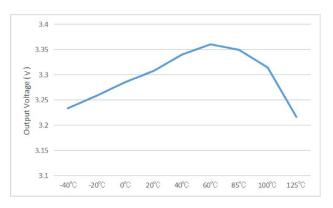

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. www.sumsemi.com.



SUM3563

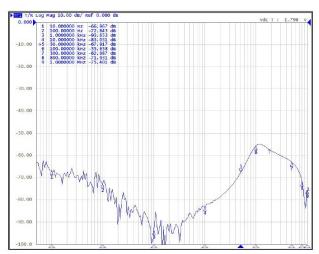

Temperature Characteristics



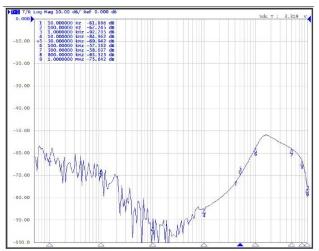

Output Voltage VS. Temperature (V_{OUT} = 1.8 V)

Output Voltage VS. Temperature (V_{OUT} = 5.0 V)

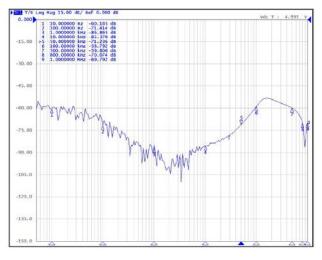
Shutdown Current VS. Temperature

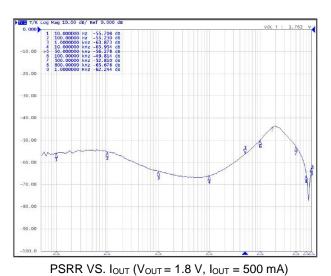


Output Voltage VS. Temperature (Vout = 3.3 V)

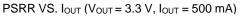


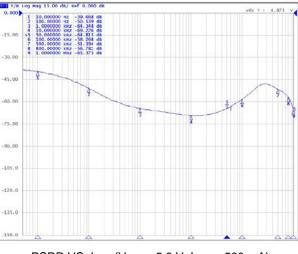
PSRR

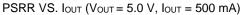

 $V_{IN} = V_{OUT} + 1 V$, $I_{OUT} = 0 mA$, $C_{IN} = C_{OUT} = 10 \mu F$

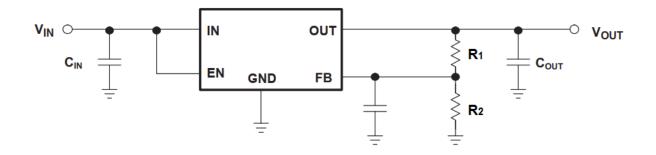

PSRR VS. IOUT (VOUT = 1.8 V, IOUT = 50 mA)




PSRR VS.. IOUT (VOUT = 3.3 V, IOUT = 50 mA)




PSRR VS. IOUT (VOUT = 5.0 V, IOUT = 50 mA)



CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. www.sumsemi.com.

APPLICATION CIRCUITS

APPLICATION INFORMATION

Input and Output Capacitor Selection

The SUM3563 requires an output capacitance of 1 μ F or larger for stability. Use X5R-type and X7R-type ceramic capacitors because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature. When choosing a capacitor for a specific application, pay attention to the dc bias characteristics for the capacitor. Higher output voltages cause a significant derating of the capacitor.

Although an input capacitor is not required for stability, good analog design practice is to connect a capacitor from IN to GND. Some input supplies have a high impedance, thus placing the input capacitor on the input supply helps reduce the input impedance. This capacitor counteracts reactive input sources and improves transient response, input ripple, and PSRR. If the input supply has a high impedance over a large range of frequencies, several input capacitors can be used in parallel to lower the impedance over frequency. Use a higher-value capacitor if large, fast, rise-time load transients are anticipated, or if the device is located several inches from the input power source.

Application of Electrolytic Capacitor

If the electrolytic capacitor should be used as input and output capacitor, the capacitance of the capacitor must be greater. The capacity value must be greater than 22 μ F.

Enable

The SUM3563 has an EN pin to turn on or turn off the regulator, When the EN pin is in logic high, the regulator will be turned on. The shutdown current is almost 0 μ A typical. The EN pin may be directly tied to V_{IN} to keep the part on. The Enable input is CMOS logic and cannot be left floating.

Setting the Output Voltage

The SUM3563 develops a 0.64 V reference voltage, V_{FB}, between the output and the adjust terminal. This voltage is applied across resistor R₁ to generate a constant current. The current I_{ADJ} from the ADJ terminal could introduce DC offset to the output. Because, this offset is very small (about 0.1 μ A), it can be ignored. The constant current then flows through the output set resistor R₂ and sets the output voltage to the desired level. Equation 2 is used for calculating V_{OUT}:

$$V_{OUT} = V_{FB} \times (1 + R_1/R_2)$$
(2)

Although I_{ADJ} is very small, $R_1 + R_2$ should be limited to less than 100 k Ω for optimum performance.

Dropout Voltage

The SUM3563 uses a PMOS pass transistor to achieve low dropout. When $(V_{IN} - V_{OUT})$ is less than the dropout voltage (V_{DO}) , the PMOS pass device is in the linear region of operation and the input-to-output resistance is the R_{DS(ON)} of the PMOS pass element. V_{DO} scales approximately with output current because the PMOS device behaves like a resistor in dropout mode. As with any linear regulator, PSRR and transient response degrade as $(V_{IN} - V_{OUT})$ approaches dropout operation.

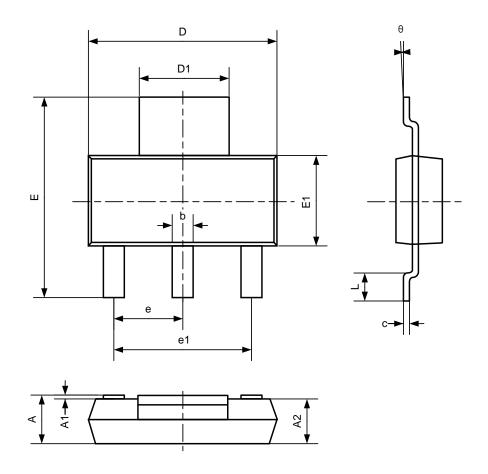
Thermal Shutdown

Thermal shutdown protection disables the output when the junction temperature rises to approximately 150° C Disabling the device eliminates the power dissipated by the device, allowing the device to cool. When the junction temperature cools to approximately 125° C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits regulator dissipation, protecting the LDO from damage as a result of overheating. Activating the thermal shutdown feature usually indicates excessive power dissipation as a result of the product of the (V_{IN} - V_{OUT}) voltage and the load current. For reliable operation, limit junction temperature to 125° C maximum.

Thermal Considerations

For continuous operation, do not exceed absolute maximum junction temperature. The maximum power dissipation depends on the thermal resistance of the IC package, PCB layout, rate of surrounding airflow, and difference between junction and ambient temperature. The maximum power dissipation can be calculated by the following formula :

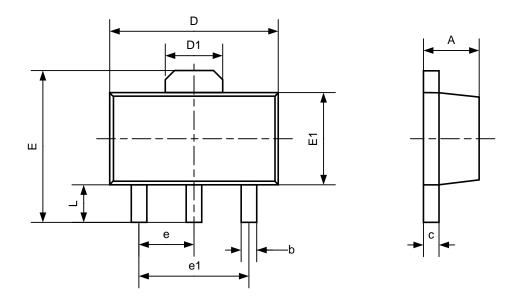
$$\mathsf{P}_{\mathsf{D}(\mathsf{MAX})} = (\mathsf{T}_{\mathsf{J}(\mathsf{MAX})} - \mathsf{T}_{\mathsf{A}}) / \theta_{\mathsf{J}\mathsf{A}}$$


where $T_{J(MAX)}$ is the maximum junction temperature, T_A is the ambient temperature, and θ_{JA} is the junction to ambient thermal resistance.

For recommended operating condition specifications the maximum junction temperature is 125°C and T_A is the ambient temperature. The junction to ambient thermal resistance, θ_{JA} , is layout dependent.

The maximum power dissipation depends on the operating ambient temperature for fixed $T_{J(MAX)}$ and thermal resistance, θ_{JA} . The derating curve in Figure 6 allows the designer to see the effect of rising ambient temperature on the maximum power dissipation.

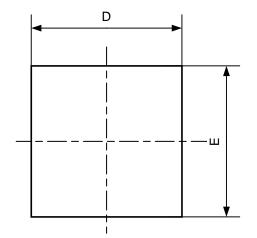
SOT-223

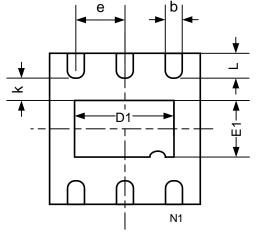


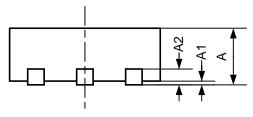
Symbol	Dimensions	In Millimeters
Symbol	Min	Мах
A	1.520	1.800
A1	0.000	0.100
A2	1.500	1.700
b	0.660	0.820
С	0.250	0.350
D	6.200	6.400
D1	2.900	3.100
E	6.830	7.070
E1	3.300	3.700
е	2.30	OBSC
e1	4.500	4.700
L	0.900	1.150
θ	0°	10°

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved.

SOT89-3




0 mm h a h	Dimensions In Millimeters			
Symbol	Min	Max		
A	1.400	1.600		
b	0.320	0.520		
С	0.350	0.440		
D	4.400	4.600		
D1	1.55	50REF		
E	3.940	4.250		
E1	2.300	2.600		
e	1.500BSC			
e1	3.000BSC			
L	0.900	1.200		

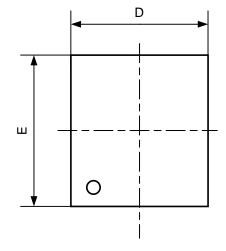

DFN2 × 2-6

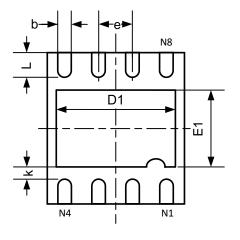
BOTTOM VIEW

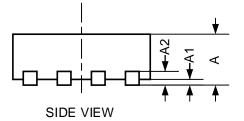
TOP VIEW

SIDE VIEW

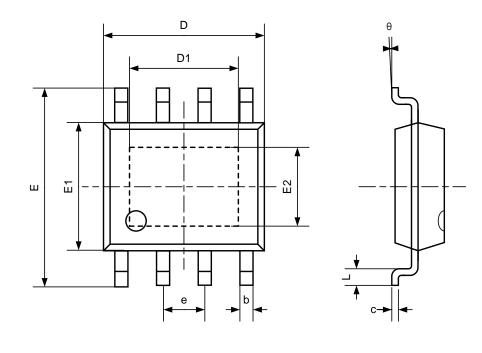
Cymrh el	Dimensions In Millimeters			
Symbol	Min	Мах		
A	0.700	0.900		
A1	0.000	0.050		
A2	0.203	BREF		
b	0.180	0.300		
D	1.900	2.100		
D1	1.100	1.300		
E	1.900	2.100		
E1	0.600	0.800		
e	0.650BSC			
L	0.250	0.450		
k	0.200			


CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **ZSUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved.


- All other trademarks mentioned are the property of their respective owners.
 - www.sumsemi.com.



DFN3 × 3-8


BOTTOM VIEW

0	Dimensions In Millimeters			
Symbol	Min	Мах		
А	0.700	0.800		
A1	0.000	0.050		
A2	0.203	REF		
b	0.180	0.300		
D	2.900	3.100		
D1	2.200	2.400		
E	2.900	3.100		
E1	1.400	1.600		
e	0.650BSC			
L	0.375	0.575		
k	0.200			

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

ESOP-8

	Dimensions	In Millimeters	
Symbol	Min	Мах	
A		1.750	
A1	0.100	0.225	
A2	1.300	1.500	
b	0.390	0.480	
С	0.210	0.260	
D	4.700	5.100	
D1	3.200	3.400	
E	5.800	6.200	
E1	3.700	4.100	
E2	2.300	2.500	
e	1.270BSC		
L	0.500	0.800	
θ	0°	8°	

www.sumsemi.com.

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved.

All other trademarks mentioned are the property of their respective owners.