SUMSEMI

SUM3570-120PL

High Voltage Low Power Consumption 500 mA LDO

DESCRIPTION

SUM3570-120PL is is a high voltage (up to 40 V) ultra-low quiescent current low dropout voltage regulator (LDO) manufactured in CMOS processes. It can deliver up to 500 mA of current while consuming only 2.5 μ A of quiescent current. It consists of a reference voltage generator, an error amplifier, a current foldback circuit, and a phase compensation circuit plus a driver transistor. The SUM3570-120PL is designed specifically for applications where very-low I_Q is a critical parameter. This device maintains low quiescent current consumption even in dropout mode to further increase the battery life.

FEATURES

- Ultra-low Quiescent Current: 2.5 µA
- Maximum Input Voltage: 40 V
- Output Voltage Highly Accurate: ±2%
- Maximum Output Current: 500 mA
- Dropout Voltage: 300 mV@lout = 100 mA
- Temperature Stability: ±50 ppm/°C
- Protections Circuits: Current Limiter, Thermal shutdown
- Output Capacitor: Low ESR Ceramic Capacitor Compatible
- Package is SOT89 -3 (L-Type)

APPLICATION

- Mobile device
- Cameras
- Wireless communication equipment
- Battery-power device

ORDER INFORMATION

Model	Package	Ordering Number	Packing Option
SUM3570-120PL	SOT89 -3 (L-Type)	SUM3570-120PL	Tape and Reel, 1000

PIN CONFIGURATION (Top View)

PIN DESCRIPTIONS

Pin	Symbol	Description
1	OUT	Output pin.
2	GND	Ground.
3	IN	Supply input pin.

RECOMMENDED OPERATING CONDITIONS

Parameter	Rating	Unit
Operation Temperature range	-40 to 125	°C

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Value	Unit
VIN	Input Voltage ⁽¹⁾		-0.3 to 45	V
Vout	Output Voltage		V_{SS} -0.3 ~ V_{IN} +0.3V	V
PD	Power Dissipation		1000	mW
θ _{JA}	Thermal Characteristics, Thermal Resistance, Junction-to-Air ⁽²⁾	SOT89-3	135	°C/W
T _{STG}	Storage Temperature		-65 to 150	°C
ESD (HBM)	ESD Protection		5000	V

NOTES:

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

- 1. Refer to Electrical Characteristics and Application Information for Safe Operating Area.
- 2. This particular frame decreases the total thermal resistance of the package and increases its ability to dissipate power when an appropriate area of copper on the printed circuit board is available for heat-sinking.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latest datasheet.

ELECTRICAL CHARACTERISTICS

(unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$.)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Unit
Vin	Input Voltage		12		40	V
V _{OUT(S)}	Output Voltage*1	$V_{IN} = V_{OUT(S)}+2 V$, $I_{OUT} = 1 \text{ mA}$	Vout(s) × 0.98	V _{OUT(S)}	V _{OUT(S)} × 1.02	V
Vanan	DropoutVoltage*2	Iout = 1 mA		4	8	mV
V DROP		I _{OUT} = 300 mA		1200	1800	mV
Load _{REG}	Load Regulation	$V_{IN} = V_{OUT(S)} + 2 V$ 1 mA ≤ I _{OUT} ≤ 400 mA		50	80	mV
$\frac{\Delta V_{OUT(S)}}{\Delta T_{A} \bullet V_{OUT(S)}}$	Temperature Stability	$V_{IN} = V_{OUT(S)} + 2 V$, $I_{OUT} = 10 mA$ -40°C ≤ T _A ≤ 125°C		±50		ppm/°C
la	Quiescent Current	$V_{IN} \le 40 \text{ V}, \text{ I}_{OUT} = 0 \text{ V}$		2.5	3.5	μA
Ioutmax	Maximum Output Current			500		
Ilmt	Current Limit	$V_{\text{IN}} = V_{\text{OUT}(S)} + 2 V$ $V_{\text{OUT}} = 0.95 \times V_{\text{OUT}(S)}$		550		mA
		f = 100 Hz, I _{OUT} = 10 mA		79		
DCDD	Power Supply	f = 1 kHz, I _{OUT} = 10 mA		62		dB
FORK	Rejection Ratio	$f = 10 \text{ kHz}, I_{OUT} = 10 \text{ mA}$		48		uБ
		f = 100 kHz, I _{OUT} = 10 mA		40		
OTP	Over Temperature Protection	I _{OUT} = 1 mA		170		°C

NOTES:

1. Vout(s): Output voltage when VIN=Vout+2 V, Iout=1 mA.

- 2. $V_{DROP}=V_{IN1} (V_{OUT(S)} \times 0.98)$ where V_{IN1} is the input voltage when $V_{OUT} = V_{OUT(S)} \times 0.98$.
- 3. ILIM: Output current when $V_{IN}=V_{OUT(S)}+2$ V and $V_{OUT}=0.95*V_{OUT(S)}$.

TYPICAL CHARACTERISTICS

Voltage set 12 V (VIN = VOUT + 2 V, CIN = 2.2 µF, COUT = 2.2 µF, TA = +25°Cunless otherwise noted.)

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners. www.sumsemi.com.

TYPICAL CHARACTERISTICS (Continued)

Output Voltage VS Output Current, $C_{IN} = C_{OUT} = 1 \ \mu F$, $I_{LIMIT} = 550 \ mA$

CAUTION: These devices are sensitive to electrostatic discharge; follow proper IC Handling Procedures. **SUMSEMI** (and designs) are registered trademarks of SUMSEMI Corporation. Copyright SUMSEMI Corporation. All Rights Reserved. All other trademarks mentioned are the property of their respective owners.

TYPICAL CHARACTERISTICS (Continued)

Power Off, $C_{IN} = C_{OUT} = 1 \ \mu F$, I $I_{OUT} = 0 \ mA$, $V_{IN} \ VS$ Vout

Power Supply Rejection Ratio at VOUT=12 V

APPLICATION CIRCUITS

PACKAGE OUTLINE

SOT89-3

Symbol	Dimensions In Millimeters			
Symbol	Min	Мах		
A	1.400	1.600		
b	0.320	0.520		
С	0.350 0.440			
D	4.400	4.600		
D1	1.550REF			
E	3.940	4.250		
E1	2.300 2.600			
e	1.500BSC			
e1	3.000BSC			
L	0.900 1.200			