

Dual Channel 8:1 CMOS Analog Signal Multiplexer

DESCRIPTION

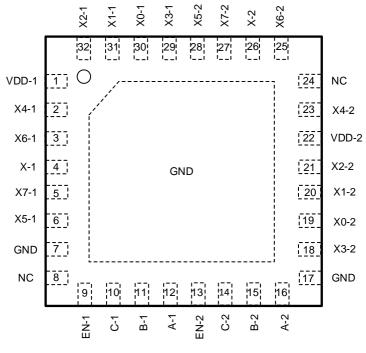
The SUM48762 is a CMOS analog IC configured as two groups of 8-channel multiplexers which is completely independent, including power supply. The This CMOS device can operate from 2.5 V to 5.5 V single supplies. Each switch can handle rail-to- rail analog signals. The off-leakage current is only 1 nA (TYP) at +25°C. All digital inputs can support 1.8 V logic control I/O.

The SUM48762 is available in QFN4 x 4-32 package. It operates over an ambient temperature range of -40° C to $+85^{\circ}$ C.

FEATURES

- Guaranteed On-Resistance 30 Ω (Ty) with 5 V Supply
- Guaranteed On-Resistance Match Between Channels
- Low Off-Leakage Current 1 nA (TYP) at +25°C
- Low On-Leakage Current 1 nA (TYP) at +25°C
- Optimized Rise Time and Fall Time of A, B, C Control Pins to Reduce Clock Feedthrough Effect
- 2.5 V to 5.5 V Single Supply Operation
- 1.8 V Logic Compatible
- High Off-Isolation: -83 dB ($R_L = 50 \Omega$, f = 1 MHz)
- -40°Cto +85°COperating Temperature Range
- Available in QFN4 × 4-32 Package

APPLICATIONS


- Battery-Operated Equipment
- Audio and Video Signal Routing
- Low-Voltage Data-Acquisition Systems
- Communications Circuits
- Automotive

ORDER INFORMATION

Model	Package	Ordering Number	Packing Option
SUM48762	QFN4 × 4-32	SUM48762QN32	Tape and Reel, 3000

PIN CONFIGURATION (Top View)

QFN4 × 4-32

Pin	0			
QFN4 × 4-32	Symbol	Description		
1, 22	VDD	Supply Voltage		
2, 3, 5, 6, 18, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32	X0~X7	Analog Switch Inputs X0-X7		
4, 26	Х	Analog Switch "X" Output.		
12, 16	А	Digital Address "A"Input.		
11, 15	В	Digital Address "B" Input.		
10, 14	С	Digital Address "C" Input.		
7, 17	GND	Ground. Connect to digital ground.		
8, 24	NC	No Connect.		
9,13	ENABLE	Digital Enable Input. Normally connected to GND.		

All other trademarks mentioned are the property of their respective owners.

FUNCTION TABLE

ENABLE	SELECT INPUTS			ON SWITCHES	
INPUT	С	В	A	ON SWITCHES	
н	Х	Х	Х	All Switches Open	
L	L	L	L	X-X0	
L	L	L	Н	X-X1	
L	L	Н	L	X-X2	
L	L	Н	Н	X-X3	
L	Н	L	L	X-X4	
L	н	L	Н	X-X5	
L	Н	Н	L	X-X6	
L	Н	Н	Н	X-X7	

X = Don't care.

NOTE: Input and output pins are identical and interchangeable. Either may be considered an input or output; signals pass equally well in either direction.

RECOMMENDED OPERATING CONDITIONS

Parameter	Rating	Unit
Supply Voltage Range	2.5 to 5.5	V
Operating Temperature Range	-40 to +85	°C

ABSOLUTE MAXIMUM RATINGS

Parameter		Rating	Unit
V _{DD} to GND		-0.3 to 6	V
Voltage into Any	Terminal ⁽¹⁾	-0.3 to (V _{DD} + 0.3)	V
Continuous Curr	ent into Any Terminal	±20	mA
Peak Current, X_(Pulsed at 1ms, 10% duty cycle)		±40	mA
Junction Temperature		150	°C
Storage temperature		-65 ~ +150	°C
Lead temperature		260 (10 sec.)	°C
ESD HBM		4000	V

NOTE:

1. Voltages exceeding V_{DD} or GND on any signal terminal are clamped by internal diodes. Limit forward-diode current to maximum current rating.

- 2. Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
- 3. This integrated circuit can be damaged if ESD protections are not considered carefully. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because even small parametric changes could cause the device not to meet the published specifications.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latestdatasheet.

ELECTRICAL CHARACTERISTICS

 $V_{DD} = 5.0 \text{ V}$, Full = -40°C to +85°C, typical values are at $T_A = +25$ °C, unless otherwise noted.

Symbol	Parameter	Conditions	TEMP	Min.	Тур.	Max.	Units	
ANALOG SV	witch							
V _{x_} , V _x	Analog Signal Range		Full	GND		V _{DD}	V	
			+25℃		30		Ω	
R _{on}	On-Resistance	$V_{DD} = 5.0 \text{ V}, \text{ I}_{X} = 1 \text{ mA}$	Full			45		
ΔR_{oN}	On-Resistance Match Between	V _{DD} = 5.0 V, I _X = 1 mA	+25°C		1		Ω	
	Channels		Full			4		
D	On-Resistance		+25°C		9		Ω	
$R_{FLAT(ON)}$	Flatness	$V_{DD} = 5.0 \text{ V}, \text{ Ix} = 1 \text{ mA}$	Full			20		
I _{X_(OFF)}	X_Off Leakage Current	$V_{DD} = 5.0 V, V_{X} = 4.5 V \text{ or } 0 V$ $V_{X} = 4.5 V \text{ or } 0 V$	+25°C		1	1000	nA	
$I_{X(OFF)}$	X Off Leakage Current	$V_{DD} = 5.0 \text{ V}, V_{X_{-}} = 4.5 \text{ V or } 0 \text{ V}$ $V_{X} = 4.5 \text{ V or } 0 \text{ V}$	+25°C		1	1000	nA	
I _{X(ON)}	X On Leakage Current	V_{DD} = 5.0 V, $V_{X_{-}}$ = 4.5 V or 0 V	+25°C		1	1000	nA	
DIGITAL I/O								
Vah, Vbh, Vch Venable	Logic Input Logic Threshold High		+25℃	1.7			V	
Vai,Vbi,Vci Venable	Logic Input Logic Threshold Low		+25°C			0.5	V	
Vah, Vbh, Vch Venable	Input-Current High	V_A , V_B , V_C , $V_{\overline{ENABLE}} = V_{DD}$	+25°C		1	1000	nA	
V _{AI} ,V _{BI} ,V _{CI} , V <u>enable</u>	Input-Current Low	V_A , V_B , V_C , $V_{\overline{\text{ENABLE}}} = 0$ V	+25°C		1	1000	nA	
DYNAMIC C	HARACTERISTICS				•	•		
t _{TRANS}	Address Transition Time	$V_{X_{-}} = \pm 3 V$, $R_L = 300 \Omega$, $C_L = 35 pF$ Test Circuit 1	+25°C		70		ns	
t _{on}	Enable Turn-On Time	$V_{X_{-}}$ = 3 V, R_{L} = 300 Ω , C_{L} = 35 pF Test Circuit 2	+25°C		60		ns	
toff	Enable Turn-Off Time	$V_{X_{-}} = 3 V, R_{L} = 300 \Omega, C_{L} = 35 pF$ Test Circuit 2	+25°C		15		ns	
t _R	Internal A, B, C Rise Time		+25°C		45		ns	
t⊦	Internal A, B, C Fall Time		+25°C		50		ns	
t _D	Break-Before- Make Time Delay	$V_{X_{-}}$ = 3 V, R _L = 300 Ω, C _L = 35 pF, Test Circuit 3	+25°C		45		ns	

All other trademarks mentioned are the property of their respective owners.

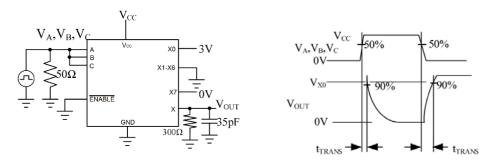
ELECTRICAL CHARACTERISTICS(CONT.)

 V_{DD} = 5.0 V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.

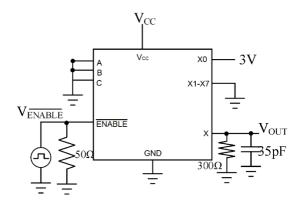
Symbol	Parameter	Conditions	ТЕМР	Min.	Тур.	Max.	Units
Q	Charge Injection	$R_S = 0 \Omega, C_L = 1 nF,$ Test Circuit 4	+25℃	+25°C 6			PC
OISO	Off Isolation	R_L = 50 Ω, f = 1 MHz, Test Circuit 5	+25℃		-83		dB
Cx_(OFF)	Input Off-Capacitance	$V_{x_{-}} = 0 V$, f = 1 MHz, Test Circuit 6	+25℃		4.7		pF
	Output Off-Capacitance	$V_{x_{-}} = 0 V$, f = 1 MHz, Test Circuit 6	+25℃		12.7		pF
C _{X(ON)}	Output On-Capacitance	$V_{X_{-}} = 0 V$, f = 1 MHz, Test Circuit 6	+25℃		16		pF
BW	-3dB Bandwidth	$R_L = 50 \Omega$	+25℃		180		MHz
THD	$ \begin{array}{c c} \text{Total Harmonic} & R_{L} = 600 \ \Omega, \ 5V_{P,P}, \\ \text{Distortion} & f = 20 \ Hz \ \text{to} \ 20 \ KHz & +25^\circC \end{array} $		0.7		%		
POWER SU	POWER SUPPLY						
V _{DD}	Power Supply Range		Full	2.5		5.5	V
IDD	Power Supply Current	$\label{eq:VDD} \begin{split} V_{\text{DD}} &= 5.0 \text{V}, \ V_{\text{A}} \ , \ V_{\text{B}} \ , \ V_{\text{C}} \ , \\ V_{\overline{\text{ENABLE}}} &= V_{\text{DD}} \ or \ 0 \end{split}$	+25°C		0.1	6	μA

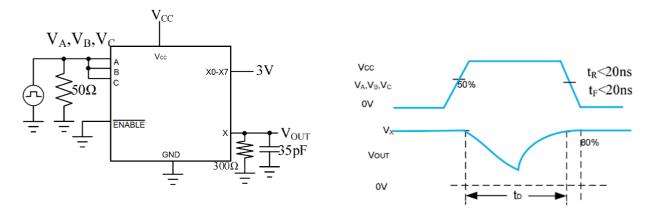
7

ELECTRICAL CHARACTERISTICS(CONT.)

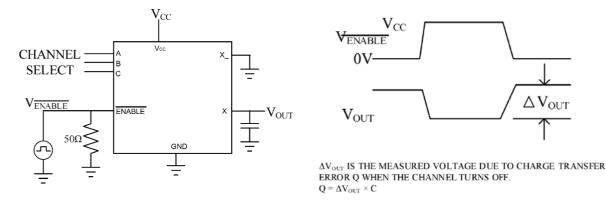

 V_{DD} = 3.3 V, Full = -40°C to +85°C, typical values are at T_A = +25°C, unless otherwise noted.

Symbol	Parameter	Conditions	TEMP	Min.	Тур.	Max.	Units
ANALOG SW	ІТСН	•					
$V_{X_{-}}, V_{X}$	Analog Signal Range		Full	GND		V _{DD}	V
D	On Desistance	1 4	+25°C		65		0
Ron	On-Resistance	$I_X = 1 \text{ mA}$	Full			80	Ω
I _{X_(OFF)}	X_Off Leakage Current	$V_{X_{-}} = 1 V, 3 V,$ $V_{X} = 3 V, 1 V$	+25℃		1	1000	nA
$I_{X(OFF)}$	X Off Leakage Current	$V_{X_{-}} = 1 V, 3 V, V_{X} = 3 V, 1 V$	+25°C		1	1000	nA
I _{X(ON)}	X On Leakage Current	V _X = 3 V, 1 V	+25°C		1	1000	nA
DIGITAL I/O							
V _{ah} ,V _{bh} ,V _{ch} , V <u>enable</u>	Logic Input Logic Threshold High		+25°C	1.7			V
Vai, Vbi, Vci, V enable	Logic Input Logic Threshold Low		+25°C			0.5	V
Iah,, Ibh, Ich, V enable	Input-Current High	V _A , V _B , V _C Venable = V _{DD}	+25°C		1	1000	nA
I _{ai} ,I _{bi} ,I _{ci,} V enable	Input-Current Low	V_A , V_B , V_C $V_{ENABLE} = 0 V$	+25℃		1	1000	nA
DYNAMIC CH	IARACTERISTICS						
t _{TRANS}	Address Transition Time	$V_{X_{-}} = 3 V/0 V, R_{L} = 300 \Omega$ $C_{L} = 35 pF$, Test Circuit 1	+25℃		100		ns
t _{on}	Enable Turn-On Time	$V_{X_{-}} = 3 V, R_{L} = 300 \Omega$ $C_{L} = 35 pF, Test Circuit 2$	+25℃		80		ns
t _{OFF}	Enable Turn-Off Time	$V_{X_{-}} = 3 V, R_{L} = 300 \Omega$ $C_{L} = 35 pF, Test Circuit 2$	+25°C		15		ns
t _R	Internal A, B, C Rise Time		+25°C		80		ns
t⊧	Internal A, B, C Fall Time		+25°C		85		ns
t⊳	Break-Before-Make Time Delay	$\begin{array}{l} V_{X_}=3 \ V, \ R_{L}=300 \ \Omega \\ C_{L}=35 \ pF, \ Test \ Circuit \ 3 \end{array}$	+25°C		65		ns
BW	-3dB Bandwidth	$R_L = 50 \Omega$	+25°C		180		MHz
Q	Charge Injection	$ \begin{array}{l} R_{S} = 0 \; \Omega, C_{L} = 1 \; nF, \\ V_{S} = 2.5 \; V, \text{Test Circuit 4} \end{array} $	+25℃		4		PC
POWER SUP	PLY						
I _{DD}	Power Supply Current	V_A , V_B , V_C $V_{\text{ENABLE}} = V_{DD} \text{ or } 0$	+25℃		0.1	3	μA

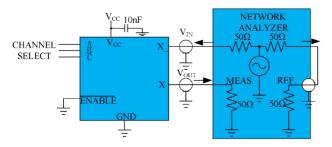

Copyright SUM Semiconductor Corporation. All Rights Reserved.


TEST CIRCUITS

Test Circuit 1 Address Transition Times (tTRANS)

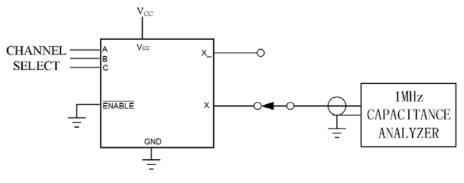


Test Circuit 2 Switching Times (ton, toff)



Test Circuit 3 Break-Before-Make Time (t_D)

SUMSEMI

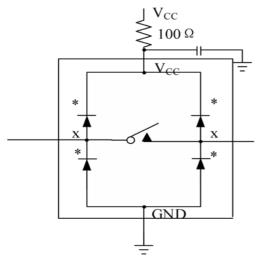


MEASUREMENTS ARE STANDARDIZED AGAINST SHORT AT SOCKET TERMINALS. OFF-ISOLATION IS MEASURED BETWEEN COM AND "OFF" NO TERMINAL ON EACH SWITCH. ON-LOSS IS MEASURED BETWEEN COM AND "ON" NO TERMINAL ON EACH SWITCH. SIGNAL DIRECTION THROUGH SWITCH IS REVERSED; WORSE VALUES ARE RECORDED.

Test Circuit 5 Off Isolation, On Loss

Test Circuit 6 Capacitance

APPLICATION INFORMATION


Power-Supply Considerations Overview

The SUM48762 construction is typical of most CMOS analog switch. It supports single power supply. V_{DD} and GND are used to drive the internal CMOS switches and set the limits of the analog voltage on any switch. Reverse ESD protection diodes are internally connected between each analog-signal pin and both V_{DD} and GND. If any analog signal exceeds V_{DD} or GND, one of these diodes will conduct. During normal operation, these and other reverse-biased ESD diodes leak, forming the only current drawn from V_{DD} or GND.

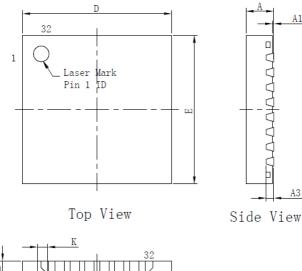
Virtually all the analog leakage current comes from the ESD diodes. Although the ESD diodes on a given signal pin are identical and therefore fairly well balanced, they are reverse biased differently. Each is biased by either V_{DD} or GND and the analog signal. This means their leakages will vary as the signal varies. The difference in the two diode leakages to the V_{DD} and GND pins constitutes the analog-signal-path leakage current. All analog leakage current flows between each pin and one of the supply terminals, not to the other switch terminal. This is why both sides of a given switch can show leakage currents of either the same or opposite polarity.

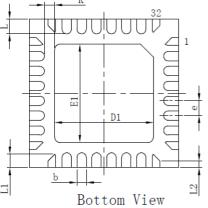
Over-Voltage Protection

Proper power-supply sequencing is recommended for the CMOS device. Do not exceed the absolute maximum ratings because stresses beyond the listed ratings can cause permanent damage to the devices. Always sequence V_{DD} on first, followed by the logic inputs and analog signals. If power-supply sequencing is not possible, add one 100 Ω resistor in series with the supply V_{DD} pin for over-voltage protection (Figure 1).

* INTERNAL PROTECTION DIODES

Figure 1 Over-Voltage Protection Using External Resistor


A1


AЗ

PACKAGE OUTLINE

QFN4 × 4-32

11

Symbol		Dimensions In Millimet	ers
Symbol –	Min	Тур.	Мах
A	0.700	0.750	0.800
A1	0.000	—	0.050
A3		0.203REF	
b	0.150	0.200	0.250
D	3.900	4.000	4.100
E	3.900	4.000	4.100
D1	2.550	2.65	2.75
E1	2.550	2.65	2.75
е		0.400TYP	
К	0.200	—	_
L	0.300	0.400	0.500
L1	0.310	0.360	0.410
L2	0.130	0.180	0.230

V 1.0

All other trademarks mentioned are the property of their respective owners.