

High-Speed USB 2.0(480 Mbps) DPDT Switches

DESCRIPTION

The SUM7222 is 2- to 1-port analog switches. Their wide bandwidth and low bit-to-bit skew allow them to pass high-speed differential signals with good signal integrity. Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Industry-leading advantages include a propagation delay of less than 250 ps, resulting from its low channel resistance and low I/O capacitance. Their high channel-to-channel crosstalk rejection results in minimal noise interference. Their bandwidth is wide enough to pass High-Speed USB 2.0 differential signals (480 Mb/s).

FEATURES

R_{ON} is Typically 6.0 Ω at V_{CC} = 3.3 V

Low Bit-to-Bit Skew: Typically 50 ps

■ Low Crosstalk: -45 dB @ 250 MHz

Low Current Consumption: 1.0 μA

Near-Zero Propagation Delay: 250 ps

Channel On-Capacitance: 4.0 pF (Typical)

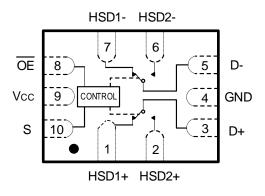
V_{CC} Operating Range: 1.65 V to 4.5 V

>750 MHz Bandwidth (or Data Frequency)

■ Package: QFN1.8 x 1.4-10

APPLICATIONS

Differential Signal Data Routing


USB 2.0 Signal Routing

ORDER INFORMATION

Model	Package	Ordering number	Packing Option
SUM7222	QFN1.8 × 1.4-10	SUM7222QN	Tape and Reel, 3000

PIN CONFIGURATION (Top View)

QFN1.8×1.4-10

PIN FUNCTION

Pin Name	Function
S	Select Input
ŌĒ	Output Enable
HSD1+, HSD1-, HSD2+, HSD2-, D+, D-	Data Ports

TRUTH TABLE

ŌĒ	S	HSD1+, HSD1-	HSD2+, HSD2-
1	X	OFF	OFF
0	0	ON	OFF
0	1	OFF	ON

ABSOLUTE MAXIMUM RATINGS

Symbol	Pins		Parameter	Value	Unit
V _{CC}	V _{CC}		Positive DC Supply Voltage	-0.5 to +5.5	V
V	HSD1+, HSD1-, HSE	D2+, HSD2-	Analog Signal Voltage	-0.5 to V_{CC} + 0.3	V
V _{IS}	D+, D-		Analog Signal Voltage	-0.5 to +5.5	V
V _{IN}	ŌĒ		Control Input Voltage	-0.5 to +5.5	V
Icc	V _{cc}		Positive DC Supply Current	50	mA
Ts			Storage Temperature	-65 to +150	°C
I _{IS_CON}	HSD1+, HSD1-, HSE D+, D-	D2+, HSD2-	Analog Signal Continuous Current-Closed Switch	±100	mA
I _{IS_PK}	HSD1+, HSD1-, HSD D+, D-	D2+, HSD2-	Analog Signal Continuous Current 10% Duty Cycle	±150	mA
I _{IN}	ŌĒ		Control Input Current	±20	mA
ESD	Connector		4-2 System on USB Pins D+, D-	8	kV
	Charged Device Model, JEDEC: J		ESD22-C101	2	

Stresses beyond those listed under "ABSOLUTE MAXIMUM RATINGS" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note 1. Defined as 10% ON, 90% off duty cycle.

CAUTION

This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SUMSEMI recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

SUMSEMI reserves the right to make any change in circuit design, specification or other related things if necessary without notice at any time. Please contact SUMSEMI sales office to get the latest datasheet.

RECOMMENDED OPERATING CONDITIONS

Symbol	Pins	Parameter	Min	Max	Unit
V _{cc}		Positive DC Supply Voltage	1.65	4.5	V
V	HSD1+, HSD1-, HSD2+, HSD2-	D1+, HSD1-, HSD2+, HSD2-		V _{cc}	1/
V _{IS}	D+, D-	Analog Signal Voltage	GND	4.5	V
V _{IN}	ŌĒ	Digital Select Input Voltage	GND	V _{CC}	V
T _A		Operating Temperature	-40	+85	°C

Minimum and maximum values are guaranteed through test or design across the Recommended Operating Conditions, where applicable. Typical values are listed for guidance only and are based on the particular conditions listed for section, where applicable. These conditions are valid for all values found in the characteristics tables unless otherwise specified in the test conditions.

DC ELECTRICAL CHARACTERISTICS

Control Input (Typical: T = 25°C, $V_{CC} = 3.3 \text{ V}$)

Symbol	Pins	Parameter	Test	V _{cc} (V)	-40	°C to +8	5°C	unit
Symbol	FIIIS	raiailletei	Conditions	▼CC (▼)	Min	Тур	Max	unit
				2.7	1.3			
V_{IH}	ŌĒ	Control Input High Voltage		3.3	1.4	-	-	V
				4.2	1.6			
				2.7			0.4	
V_{IL}	ŌĒ	Control Input Low Voltage		3.3	-		0.4	V
				4.2			0.5	
I _{IN}	ŌĒ	Control Input Leakage Current	0 ≤ V _{IS} ≤ V _{CC}	1.65 ~ 4.5	-	-	±1.0	μΑ

Supply and Leakage Current (Typical: T = 25°C, $V_{CC} = 3.3 \text{ V}$)

Symbol	Pins	Parameter	Test Conditions	V (V)	-40℃ to +85℃		unit	
Symbol	FIIIS	Parameter	rest Conditions	V _{CC} (V)	Min	Max	uiit	
I _{cc}	V_{CC}	Quiescent Supply Current	$V_{IS} = V_{CC}$ or GND; $I_{OUT} = 0A$	1.65 ~ 4.5	-	1.0	μΑ	
I _{CCT}	V _{CC}	Increase in I _{CC} per Control Voltage	V _{IN} = 2.6V	3.6	-	10	μΑ	
l _{oz}	HSD1+, HSD1-, HSD2+, HSD2-	OFF Stage Leakage Current	0 ≤ V _{IS} ≤ V _{CC}	1.65 ~ 4.5	-	±1.0	μΑ	
I _{OFF}	D+,D-	Power OFF Leakage Current	0 ≤ V _{IS} ≤ 4.5V	0	-	±1.0	μΑ	

High Speed on Resistance (Typical: T = 25°C, V_{CC} = 3.3 V)

Symbol	Pins	Doromotor	Test Conditions	V (V)	-40)°C to +	85℃	unit
Symbol	Pilis	Parameter	rest Conditions	V _{CC} (V)	Min	Тур	Max	unit
R _{ON}		On-Resistance	$V_{IS} = 0 \text{ V to } 0.4 \text{ V},$ $I_{ON} = 8 \text{ mA}$	2.7 3.3 4.2	-	6.5 6.0 5.5	12 10 8.0	Ω
R _{FLAT}		On-Resistance Flatness	$V_{IS} = 0 \text{ V to } 1.0 \text{ V},$ $I_{ON} = 8 \text{ mA}$	2.7 3.3 4.2	-	0.6 0.5 0.4	-	Ω
ΔR _{ON}		On-Resistance Matching	V _{IS} = 0 V to 0.4 V, I _{ON} = 8 mA	2.7 3.3 4.2	-	0.25 0.2 0.15	-	Ω

DC ELECTRICAL CHARACTERISTICS (Continued)

Full Speed on Resistance (Typical: T = 25°C, V_{CC} = 3.3 V)

Cumb al	Dina	Danamatan	Test Conditions	V 00	-40)℃ to +	85℃	unit
Symbol	Pins	Parameter		V _{cc} (V)	Min	Тур	Max	unit
	R _{ON} On-Resistance	$V_{IS} = 0 \text{ V to } V_{CC},$	2.7		9.0	12		
R _{ON}		$I_{ON} = 8 \text{ mA}$	3.3	-	7.5	10.5	Ω	
			ION - O IIIA	4.2		6.0	8.5	
	On Booi	On-Resistance	$V_{IS} = 0 \text{ V to } 1.0 \text{ V},$	2.7		0.6		
R_{FLAT}			$I_{ON} = 8 \text{ mA}$	3.3	-	0.5	-	Ω
		Flatness	$I_{ON} = 8 \text{ mA}$	4.2		0.4		
		On-Resistance	\/ - 0 \/ to \/	2.7		1.20		
ΔR _{ON}		Matching	$V_{IS} = 0 \text{ V to } V_{CC},$ $I_{ON} = 8 \text{ mA}$	3.3	-	1.45	-	Ω
				4.2		1.65		

AC ELECTRICAL CHARACTERISTICS

Timing/Frequency (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

Comple of	Pins	Parameter	Test	V ()()	-40℃ to +85℃			:4
Symbol	Pins		Conditions	V _{cc} (V)	Min	Тур	Max	unit
t _{ON}	Closed to Open	Turn-ON Time		1.65 ~ 4.5	-	14	30	ns
t _{OFF}	Open to Closed	Turn-OFF Time		1.65 ~ 4.5	-	10	20	ns
t _{BBM}		Break-Before-Make Delay	$V_{IS} = 0 \text{ V to } V_{CC},$ $I_{ON} = 8 \text{ mA}$	1.65 ~ 4.5	-	2.20 2.45 2.65	-	ns
DW		2dP Pandwidth	C _L = 5 pF	165 15		550		MHz
BW		-3dB Bandwidth	CL = 0 pF	1.65 ~ 4.5	-	750	-	IVICTZ

Isolation (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

Symbol	Pins	Parameter	Test	V (V)	-40℃ to +85℃			unit
			Conditions	V _{cc} (V)	Min	Тур	Max	unit
O _{IRR}	Open	OFF-Isolation	f = 250 MHz	1.65 ~ 4.5	-	-30	-	dB
X _{TALK}	HSD1+ to HSD1-	Non-Adjacent Channel Crosstalk	f = 250 MHz	1.65 ~ 4.5	ı	-45	ı	dB

Capacitance (Typical: T = 25°C, V_{CC} = 3.3 V, R_L = 50 Ω , C_L = 5 pF, f = 1 MHz)

Symbol	Pins	Parameter	Test	V (A)	-40℃ to +85℃			unit
Syllibol	FIIIS	Farameter	Conditions	V _{cc} (V)	Min	Тур	Max	uiiit
C _{IN}	ŌĒ	Control Pin Input Capacitance		0		1.8		pF
C _{ON}	D+ to HSD1 + or HSD2+	ON Capacitance	OE = 0 V	3.3		4.0		pF
C _{OFF}	HSD2+, HSD2-	OFF Capacitance	$\frac{V_{IS}}{OE} = 3.3 \text{ V};$	3.3		2.2		pF

TYPICAL PERFORMANCE CHARACTERISTICS

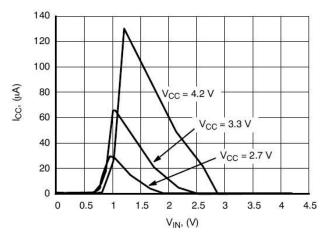


Figure 1- a. I_{CC} vs. V_{IN}

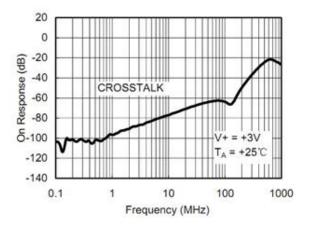


Figure 1- b. Response vs. frequency

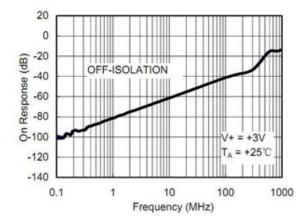
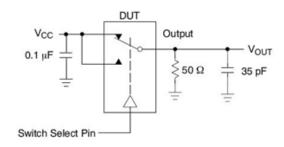



Figure1- c. Response vs. frequency

TEST CIRCUITS

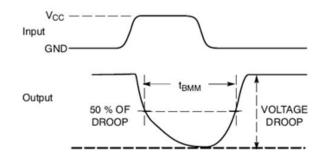
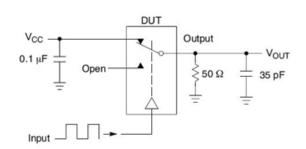



Figure 2. t_{BBM} (Time Break-Before-Make)

TEST CIRCUITS (Continued)

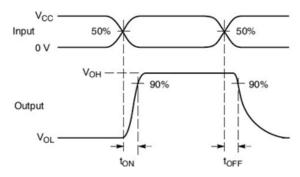
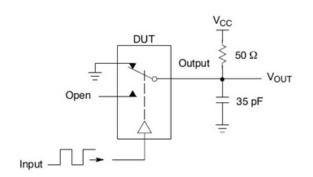



Figure 3. toN/toFF

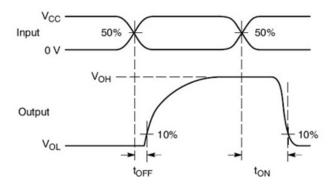


Figure 4. t_{ON}/t_{OFF}

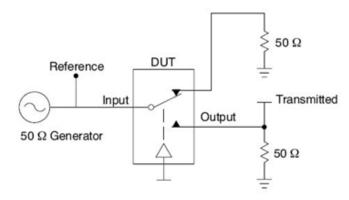


Figure 5. Off Channel Isolation/On Channel Loss (BW)/Crosstalk (On Channel to Off Channel)/V_{ONL}

Channel switch control test socket is normalized. Off isolation is measured across an off channel. On loss is the bandwidth of an On switch. V_{ISO} , Bandwidth and V_{ONL} are independent of the input signal direction.

$$V_{ISO}$$
 = Off Channel Isolation = $20Log(\frac{VOUT}{VIN})$ for V_{IN} at 100 kHZ

 V_{ONL} = On Channel Loss = $20Log(\frac{VOUT}{VIN})$ for V_{IN} at 100 kHz to 50 MHz

Bandwidth (BW) = the frequency 3 dB below V_{ONL}

 V_{CT} = Use V_{ISO} setup and test to all other switch analog input/outputs terminated with 50 Ω

TYPICAL PERFORMANCE CURVES

T_A = +25°C, Unless Otherwise Specified

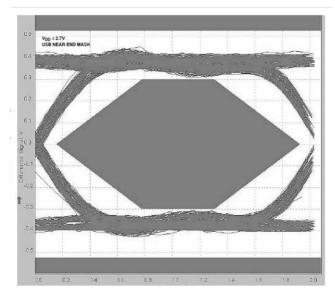
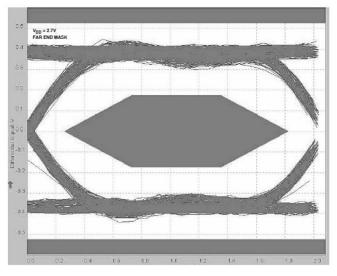
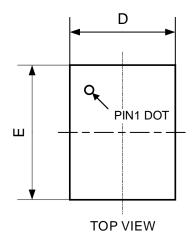
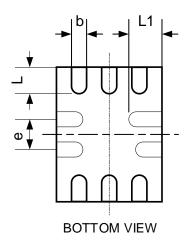
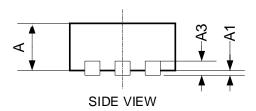


Figure 6. Eye Pattern: 480Mbps with USB Switches in the Signal Path


Figure 7. Eye Pattern: 480Mbps with USB Switches in the Signal Path



PACKAGE OUTLINE

QFN1.8 × 1.4-10

Symbol	Dimensions In Millimeters		
	Min	Nom	Max
A	0.500	0.550	0.600
A1	0.000		0.050
A3	0.150REF		
D	1.350	1.400	1.450
E	1.750	1.800	1.850
b	0.150	0.200	0.250
L	0.300	0.400	0.500
L1	0.400	0.500	0.600
е	0.400BSC		